NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Martyna Daria Swiatczak; Michael Baumgartner – Sociological Methods & Research, 2025
In this paper, we investigate the conditions under which data imbalances, a common data characteristic that occurs when factor values are unevenly distributed, are problematic for the performance of Coincidence Analysis (CNA). We further examine how such imbalances relate to fragmentation and noise in data. We show that even extreme data…
Descriptors: Causal Models, Comparative Analysis, Data Analysis, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Judith Glaesser – International Journal of Social Research Methodology, 2024
Causal asymmetry is a situation where the causal factors under study are more suitable for explaining the outcome than its absence (or vice versa); they do not explain both equally well. In such a situation, presence of a cause leads to presence of the effect, but absence of the cause may not lead to absence of the effect. A conceptual discussion…
Descriptors: Comparative Analysis, Causal Models, Correlation, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Alrik Thiem; Lusine Mkrtchyan – Field Methods, 2024
Qualitative comparative analysis (QCA) is an empirical research method that has gained some popularity in the social sciences. At the same time, the literature has long been convinced that QCA is prone to committing causal fallacies when confronted with non-causal data. More specifically, beyond a certain case-to-factor ratio, the method is…
Descriptors: Qualitative Research, Comparative Analysis, Research Methodology, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
Cody Ding – Educational Psychology Review, 2024
In the article "It's Just an Observation," Robinson and Wainer (Educational Psychology Review 35, Robinson, D., & Wainer, H. (2023). It's just an observation. Educational Psychology Review, 35(83), Published online: 14 August, 2023) lamented that educational psychology is moving toward the dark side of the quality continuum, with…
Descriptors: Journal Articles, Educational Psychology, Quality Assurance, Barriers
Peer reviewed Peer reviewed
Direct linkDirect link
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Adam N. Glynn; Miguel R. Rueda; Julian Schuessler – Sociological Methods & Research, 2024
Post-instrument covariates are often included as controls in instrumental variable (IV) analyses to address a violation of the exclusion restriction. However, we show that such analyses are subject to biases unless strong assumptions hold. Using linear constant-effects models, we present asymptotic bias formulas for three estimators (with and…
Descriptors: Causal Models, Statistical Inference, Error of Measurement, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Michelle L. Bianco – ProQuest LLC, 2024
The purpose of this quantitative, non-experimental, causal-comparative study is to determine if there is a difference in the writing motivation of students with attention-deficit/hyperactivity disorder (ADHD) and students without ADHD in online college composition I courses. The study of writing motivation in relation to ADHD in online college…
Descriptors: Student Motivation, Attention Deficit Hyperactivity Disorder, Electronic Learning, Writing Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Guanglei Hong; Ha-Joon Chung – Sociological Methods & Research, 2024
The impact of a major historical event on child and youth development has been of great interest in the study of the life course. This study is focused on assessing the causal effect of the Great Recession on youth disconnection from school and work. Building on the insights offered by the age-period-cohort research, econometric methods, and…
Descriptors: Economic Climate, Gender Differences, Social Class, Developmental Stages
Peer reviewed Peer reviewed
Direct linkDirect link
Elaine Chiu – Society for Research on Educational Effectiveness, 2024
Background: Observation Studies, Unmeasured Confounding, and Sensitivity Analysis: An important part of educational research is identifying important, potentially causal, factors that influence children's learning from observational studies. However, it is well-known that discovering such factors from observational studies can be biased due to…
Descriptors: Educational Research, Research Methodology, Attribution Theory, Learning Processes