Publication Date
In 2025 | 2 |
Since 2024 | 13 |
Descriptor
Source
Structural Equation Modeling:… | 5 |
Grantee Submission | 2 |
Society for Research on… | 2 |
British Journal of… | 1 |
Educational and Psychological… | 1 |
Journal of Educational… | 1 |
Practical Assessment,… | 1 |
Author
Ben Kelcey | 2 |
Fangxing Bai | 2 |
Albert Sesé | 1 |
Amota Ataneka | 1 |
Bas B. L. Penning de Vries | 1 |
Carl Falk | 1 |
Dae Woong Ham | 1 |
Ellen L. Hamaker | 1 |
Emma Somer | 1 |
Fanbo Li | 1 |
Hongfeng Zhang | 1 |
More ▼ |
Publication Type
Reports - Research | 12 |
Journal Articles | 10 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Self Description Questionnaire | 1 |
What Works Clearinghouse Rating
Kelvin T. Afolabi; Timothy R. Konold – Practical Assessment, Research & Evaluation, 2024
Exploratory structural equation (ESEM) has received increased attention in the methodological literature as a promising tool for evaluating latent variable measurement models. It overcomes many of the limitations attached to exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), while capitalizing on the benefits of each. Given…
Descriptors: Measurement Techniques, Factor Analysis, Structural Equation Models, Comparative Analysis
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This study aims to estimate the latent interaction effect in the CLPM model through a two-step multiple imputation analysis. The estimation of within x within and between x within latent interaction under the CLPM model framework is compared between the one-step Bayesian LMS method and the two-step multiple imputation analysis through a simulation…
Descriptors: Guidelines, Bayesian Statistics, Self Esteem, Depression (Psychology)
Hongfeng Zhang; Fanbo Li; Xiaolong Chen – Journal of Educational Computing Research, 2025
This study addresses the gap in understanding graduate students' sustained engagement behavior (SEB) with generative artificial intelligence (GAI) by integrating the Technology Acceptance Model (TAM), Expectation Confirmation Theory (ECT), and Theory of Reasoned Action (TRA) into a comprehensive embedding model. It introduces the Technology…
Descriptors: Graduate Students, Artificial Intelligence, Learner Engagement, Foreign Countries
Tenko Raykov – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This note demonstrates that measurement invariance does not guarantee meaningful and valid group comparisons in multiple-population settings. The article follows on a recent critical discussion by Robitzsch and Lüdtke, who argued that measurement invariance was not a pre-requisite for such comparisons. Within the framework of common factor…
Descriptors: Error of Measurement, Prerequisites, Factor Analysis, Evaluation Methods
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Igor Esnaola; Albert Sesé; Lorea Azpiazu; Yina Wang – British Journal of Educational Psychology, 2024
Background: Modelling academic self-concept through second-order factors or bifactor structures is an important issue with substantive and practical implications; besides, the bifactor model has not been analysed with a Chinese sample and cross-cultural studies in the academic self-concept are scarce. Likewise, latent structure validity evidence…
Descriptors: Academic Achievement, Self Concept, Psychometrics, Validity
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics