Publication Date
In 2025 | 1 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 25 |
Since 2016 (last 10 years) | 42 |
Since 2006 (last 20 years) | 53 |
Descriptor
Comparative Analysis | 53 |
Models | 33 |
Scores | 12 |
Structural Equation Models | 12 |
Statistical Analysis | 11 |
Bayesian Statistics | 10 |
Prediction | 10 |
Academic Achievement | 9 |
Elementary School Students | 9 |
Accuracy | 8 |
Intervention | 8 |
More ▼ |
Source
Grantee Submission | 53 |
Author
Zhang, Zhiyong | 3 |
Amisha Jindal | 2 |
Ashish Gurung | 2 |
Charlotte Z. Mann | 2 |
Cho, Sun-Joo | 2 |
Chun Wang | 2 |
D'Mello, Sidney | 2 |
Erin Ottmar | 2 |
Gongjun Xu | 2 |
Ji-Eun Lee | 2 |
Johann A. Gagnon-Bartsch | 2 |
More ▼ |
Publication Type
Reports - Research | 52 |
Journal Articles | 19 |
Speeches/Meeting Papers | 11 |
Numerical/Quantitative Data | 2 |
Tests/Questionnaires | 2 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to…
Descriptors: Error of Measurement, Models, Evaluation Methods, Item Analysis
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis

W. Jake Thompson – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models that can be used to estimate the presence or absence of psychological traits, or proficiency on fine-grained skills. Critical to the use of any psychometric model in practice, including DCMs, is an evaluation of model fit. Traditionally, DCMs have been estimated with maximum…
Descriptors: Bayesian Statistics, Classification, Psychometrics, Goodness of Fit
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Amy Adair; Michael Sao Pedro; Janice Gobert; Jessica A. Owens – Grantee Submission, 2023
Developing models and using mathematics are two key practices in internationally recognized science education standards such as the Next Generation Science Standards (NGSS, 2013). In this paper, we used a virtual performance-based formative assessment to capture students' competencies at both "developing" and "evaluating"…
Descriptors: Student Evaluation, Mathematical Models, Competence, Scientific Research
Chun Wang; Ruoyi Zhu; Gongjun Xu – Grantee Submission, 2022
Differential item functioning (DIF) analysis refers to procedures that evaluate whether an item's characteristic differs for different groups of persons after controlling for overall differences in performance. DIF is routinely evaluated as a screening step to ensure items behavior the same across groups. Currently, the majority DIF studies focus…
Descriptors: Models, Item Response Theory, Item Analysis, Comparative Analysis
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Candace Walkington; Mitchell J. Nathan; Min Wang; Kelsey Schenck – Grantee Submission, 2022
Theories of grounded and embodied cognition offer a range of accounts of how reasoning and body-based processes are related to each other. To advance theories of grounded and embodied cognition, we explore the "cognitive relevance" of particular body states to associated math concepts. We test competing models of action-cognition…
Descriptors: Thinking Skills, Mathematics Skills, Cognitive Processes, Models
Zhang, Chuankai; Huang, Yanzun; Wang, Jingyu; Lu, Dongyang; Fang, Weiqi; Stamper, John; Fancsali, Stephen; Holstein, Kenneth; Aleven, Vincent – Grantee Submission, 2019
"Wheel spinning" is the phenomenon in which a student fails to master a Knowledge Component (KC), despite significant practice. Ideally, an intelligent tutoring system would detect this phenomenon early, so that the system or a teacher could try alternative instructional strategies. Prior work has put forward several criteria for wheel…
Descriptors: Identification, Intelligent Tutoring Systems, Academic Failure, Criteria