NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cody, Christa; Maniktala, Mehak; Lytle, Nicholas; Chi, Min; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2022
Research has shown assistance can provide many benefits to novices lacking the mental models needed for problem solving in a new domain. However, varying approaches to assistance, such as subgoals and next-step hints, have been implemented with mixed results. Next-Step hints are common in data-driven tutors due to their straightforward generation…
Descriptors: Comparative Analysis, Prior Learning, Intelligent Tutoring Systems, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Katz, Sandra; Albacete, Patricia; Chounta, Irene-Angelica; Jordan, Pamela; McLaren, Bruce M.; Zapata-Rivera, Diego – International Journal of Artificial Intelligence in Education, 2021
Jim Greer and his colleagues argued that student modelling is essential to provide adaptive instruction in tutoring systems and showed that effective modelling is possible, despite being enormously challenging. Student modelling plays a prominent role in many intelligent tutoring systems (ITSs) that address problem-solving domains. However,…
Descriptors: Physics, Science Instruction, Pretests Posttests, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Fabic, Geela Venise Firmalo; Mitrovic, Antonija; Neshatian, Kourosh – International Journal of Artificial Intelligence in Education, 2019
The overarching goal of our project is to design effective learning activities for PyKinetic, a smartphone Python tutor. In this paper, we present a study using a variant of Parsons problems we designed for PyKinetic. Parsons problems contain randomized code which needs to be re-ordered to produce the desired effect. In our variant of Parsons…
Descriptors: Telecommunications, Handheld Devices, Cues, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Xingliang; Mitrovic, Antonija; Mathews, Moffat – International Journal of Artificial Intelligence in Education, 2019
Agency refers to the level of control the student has over learning. Most studies on agency in computer-based learning environments have been conducted in the context of educational games and multimedia learning, while there is little research done in the context of learning with Intelligent Tutoring Systems (ITSs). We conducted a study in the…
Descriptors: Problem Solving, Intelligent Tutoring Systems, Educational Games, Independent Study
Peer reviewed Peer reviewed
Direct linkDirect link
Lintean, Mihai; Rus, Vasile; Azevedo, Roger – International Journal of Artificial Intelligence in Education, 2012
This article describes the problem of detecting the student mental models, i.e. students' knowledge states, during the self-regulatory activity of prior knowledge activation in MetaTutor, an intelligent tutoring system that teaches students self-regulation skills while learning complex science topics. The article presents several approaches to…
Descriptors: Semantics, Intelligent Tutoring Systems, Prior Learning, Mathematics