NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
George Leckie; Richard Parker; Harvey Goldstein; Kate Tilling – Journal of Educational and Behavioral Statistics, 2024
School value-added models are widely applied to study, monitor, and hold schools to account for school differences in student learning. The traditional model is a mixed-effects linear regression of student current achievement on student prior achievement, background characteristics, and a school random intercept effect. The latter is referred to…
Descriptors: Academic Achievement, Value Added Models, Accountability, Institutional Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Reagan Mozer; Luke Miratrix; Jackie Eunjung Relyea; James S. Kim – Journal of Educational and Behavioral Statistics, 2024
In a randomized trial that collects text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by human raters. An impact analysis can then be conducted to compare treatment and control groups, using the hand-coded scores as a measured outcome. This…
Descriptors: Scoring, Evaluation Methods, Writing Evaluation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
St. Clair, Travis; Hallberg, Kelly; Cook, Thomas D. – Journal of Educational and Behavioral Statistics, 2016
We explore the conditions under which short, comparative interrupted time-series (CITS) designs represent valid alternatives to randomized experiments in educational evaluations. To do so, we conduct three within-study comparisons, each of which uses a unique data set to test the validity of the CITS design by comparing its causal estimates to…
Descriptors: Research Methodology, Randomized Controlled Trials, Comparative Analysis, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Cho, Sun-Joo; Cohen, Allan S. – Journal of Educational and Behavioral Statistics, 2010
Mixture item response theory models have been suggested as a potentially useful methodology for identifying latent groups formed along secondary, possibly nuisance dimensions. In this article, we describe a multilevel mixture item response theory (IRT) model (MMixIRTM) that allows for the possibility that this nuisance dimensionality may function…
Descriptors: Simulation, Mathematics Tests, Item Response Theory, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Li – Journal of Educational and Behavioral Statistics, 2010
Item factor analysis (IFA), already well established in educational measurement, is increasingly applied to psychological measurement in research settings. However, high-dimensional confirmatory IFA remains a numerical challenge. The current research extends the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm, initially proposed for…
Descriptors: Simulation, Questionnaires, Measurement, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Passos, Valeria Lima; Berger, Martijn P. F.; Tan, Frans E. S. – Journal of Educational and Behavioral Statistics, 2008
During the early stage of computerized adaptive testing (CAT), item selection criteria based on Fisher"s information often produce less stable latent trait estimates than the Kullback-Leibler global information criterion. Robustness against early stage instability has been reported for the D-optimality criterion in a polytomous CAT with the…
Descriptors: Computer Assisted Testing, Adaptive Testing, Evaluation Criteria, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Seonghoon; Kolen, Michael J. – Journal of Educational and Behavioral Statistics, 2007
Under item response theory, the characteristic curve methods (Haebara and Stocking-Lord methods) are used to link two ability scales from separate calibrations. The linking methods use their respective criterion functions that can be defined differently according to the symmetry- and distribution-related schemes. The symmetry-related scheme…
Descriptors: Measures (Individuals), Item Response Theory, Simulation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jo, Booil – Journal of Educational and Behavioral Statistics, 2008
An analytical approach was employed to compare sensitivity of causal effect estimates with different assumptions on treatment noncompliance and non-response behaviors. The core of this approach is to fully clarify bias mechanisms of considered models and to connect these models based on common parameters. Focusing on intention-to-treat analysis,…
Descriptors: Evaluation Methods, Intention, Research Methodology, Causal Models