Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Journal of Experimental… | 7 |
Author
Baek, Eunkyeng | 2 |
Adesope, Olusola | 1 |
Austin, Bruce | 1 |
Beretvas, S. Natasha | 1 |
Dong, Nianbo | 1 |
Ferron, John M. | 1 |
French, Brian | 1 |
Gotch, Chad | 1 |
Henri, Maria | 1 |
Huang, Francis L. | 1 |
Kelcey, Benjamin | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Information Analyses | 1 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 1 | 1 |
Grade 2 | 1 |
Kindergarten | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Leroux, Audrey J. – Journal of Experimental Education, 2019
This study proposes a new model, termed the multiple membership piecewise growth model (MM-PGM), to handle individual mobility across clusters frequently encountered in longitudinal studies, especially in educational research wherein some students could attend multiple schools during the course of the study. A real data set containing some…
Descriptors: Student Mobility, Longitudinal Studies, Hierarchical Linear Modeling, Grade 1
Dong, Nianbo; Kelcey, Benjamin; Spybrook, Jessaca – Journal of Experimental Education, 2018
Researchers are often interested in whether the effects of an intervention differ conditional on individual- or group-moderator variables such as children's characteristics (e.g., gender), teacher's background (e.g., years of teaching), and school's characteristics (e.g., urbanity); that is, the researchers seek to examine for whom and under what…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Intervention, Effect Size
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Austin, Bruce; French, Brian; Adesope, Olusola; Gotch, Chad – Journal of Experimental Education, 2017
Measures of variability are successfully used in predictive modeling in research areas outside of education. This study examined how standard deviations can be used to address research questions not easily addressed using traditional measures such as group means based on index variables. Student survey data were obtained from the Organisation for…
Descriptors: Predictor Variables, Models, Predictive Measurement, Statistical Analysis