Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Society for Research on… | 7 |
Author
Ben Kelcey | 2 |
Fangxing Bai | 2 |
Amota Ataneka | 1 |
Chen, Cassie J. S. | 1 |
Kaplan, David | 1 |
Karabatsos, George | 1 |
Kyle Cox | 1 |
Pan, Yilin | 1 |
Rindskopf, David | 1 |
Walker, Stephen G. | 1 |
Yanli Xie | 1 |
More ▼ |
Publication Type
Reports - Research | 4 |
Reports - Evaluative | 3 |
Education Level
Early Childhood Education | 1 |
High Schools | 1 |
Higher Education | 1 |
Kindergarten | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Illinois | 1 |
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Pan, Yilin – Society for Research on Educational Effectiveness, 2016
Given the necessity to bridge the gap between what happened and what is likely to happen, this paper aims to explore how to apply Bayesian inference to cost-effectiveness analysis so as to capture the uncertainty of a ratio-type efficiency measure. The first part of the paper summarizes the characteristics of the evaluation data that are commonly…
Descriptors: Resource Allocation, Cost Effectiveness, Bayesian Statistics, Statistical Analysis
Rindskopf, David – Society for Research on Educational Effectiveness, 2013
Single case designs (SCDs) generally consist of a small number of short time series in two or more phases. The analysis of SCDs statistically fits in the framework of a multilevel model, or hierarchical model. The usual analysis does not take into account the uncertainty in the estimation of the random effects. This not only has an effect on the…
Descriptors: Research Design, Bayesian Statistics, Computation, Data
Society for Research on Educational Effectiveness, 2013
One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…
Descriptors: Research Design, Effect Size, Intervention, Statistical Analysis
Kaplan, David; Chen, Cassie J. S. – Society for Research on Educational Effectiveness, 2011
Propensity score analysis (PSA) has been used in a variety of settings, such as education, epidemiology, and sociology. Most typically, propensity score analysis has been implemented within the conventional frequentist perspective of statistics. This perspective, as is well known, does not account for uncertainty in either the parameters of the…
Descriptors: Bayesian Statistics, Probability, Statistical Analysis, Statistical Inference
Karabatsos, George; Walker, Stephen G. – Society for Research on Educational Effectiveness, 2011
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
Descriptors: Bayesian Statistics, Regression (Statistics), Nonparametric Statistics, Statistical Inference