NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry – ETS Research Report Series, 2015
The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…
Descriptors: Item Response Theory, Computation, Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Joseph J.; Griffiths, Thomas L. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2013
Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…
Descriptors: Experimental Psychology, Bias, Misconceptions, Statistical Analysis
Peer reviewed Peer reviewed
Hankins, Janette A. – Educational and Psychological Measurement, 1990
The effects of a fixed and variable entry procedure on bias and information of a Bayesian adaptive test were compared. Neither procedure produced biased ability estimates on the average. Bias at the distribution extremes, efficiency curves, item subsets generated for administration, and items required to reach termination are discussed. (TJH)
Descriptors: Adaptive Testing, Aptitude Tests, Bayesian Statistics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2006
By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…
Descriptors: Maximum Likelihood Statistics, Statistical Distributions, Structural Equation Models, Robustness (Statistics)
Kim, Seock-Ho; And Others – 1992
Hierarchical Bayes procedures were compared for estimating item and ability parameters in item response theory. Simulated data sets from the two-parameter logistic model were analyzed using three different hierarchical Bayes procedures: (1) the joint Bayesian with known hyperparameters (JB1); (2) the joint Bayesian with information hyperpriors…
Descriptors: Ability, Bayesian Statistics, Comparative Analysis, Equations (Mathematics)
Buhr, Dianne C.; Algina, James – 1986
The focus of this study is on the estimation procedures implemented in BILOG, a computer program. One purpose is to compare the item parameter estimates produced by various procedures available in BILOG. Four different models are used: the one, two, and three parameter model and a three parameter model with common guessing parameters. The results…
Descriptors: Ability, Bayesian Statistics, Comparative Analysis, Computer Oriented Programs