NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis