Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 31 |
Descriptor
Comparative Analysis | 32 |
Computation | 32 |
Hierarchical Linear Modeling | 32 |
Maximum Likelihood Statistics | 13 |
Statistical Analysis | 13 |
Error of Measurement | 10 |
Foreign Countries | 7 |
Item Response Theory | 7 |
Models | 7 |
Monte Carlo Methods | 7 |
Bayesian Statistics | 6 |
More ▼ |
Source
Author
Yang, Ji Seung | 4 |
Cai, Li | 3 |
Cho, Sun-Joo | 3 |
Bottge, Brian A. | 2 |
Oranje, Andreas | 2 |
Akaeze, Hope O. | 1 |
Austin, Megan J. | 1 |
Bellara, Aarti | 1 |
Berends, Mark | 1 |
Beretvas, S. Natasha | 1 |
Boedeker, Peter | 1 |
More ▼ |
Publication Type
Reports - Research | 28 |
Journal Articles | 25 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 2 |
Education Level
Secondary Education | 7 |
Middle Schools | 6 |
Elementary Education | 5 |
Junior High Schools | 3 |
Grade 4 | 2 |
Grade 5 | 2 |
Grade 8 | 2 |
Intermediate Grades | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Grade 1 | 1 |
More ▼ |
Audience
Location
South Korea | 2 |
Canada | 1 |
Colorado | 1 |
Florida | 1 |
Germany | 1 |
Indiana | 1 |
Italy | 1 |
Netherlands | 1 |
New York | 1 |
North Carolina | 1 |
Sweden | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 5 |
National Assessment of… | 2 |
Indiana Statewide Testing for… | 1 |
International Association for… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 1 |
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Dong, Nianbo; Kelcey, Benjamin; Spybrook, Jessaca – Journal of Experimental Education, 2018
Researchers are often interested in whether the effects of an intervention differ conditional on individual- or group-moderator variables such as children's characteristics (e.g., gender), teacher's background (e.g., years of teaching), and school's characteristics (e.g., urbanity); that is, the researchers seek to examine for whom and under what…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Intervention, Effect Size
Raykov, Tenko; Marcoulides, George A.; Akaeze, Hope O. – Educational and Psychological Measurement, 2017
This note is concerned with examining the relationship between within-group and between-group variances in two-level nested designs. A latent variable modeling approach is outlined that permits point and interval estimation of their ratio and allows their comparison in a multilevel study. The procedure can also be used to test various hypotheses…
Descriptors: Comparative Analysis, Models, Statistical Analysis, Hierarchical Linear Modeling
Moeyaert, Mariola; Ugille, Maaike; Natasha Beretvas, S.; Ferron, John; Bunuan, Rommel; Van den Noortgate, Wim – International Journal of Social Research Methodology, 2017
This study investigates three methods to handle dependency among effect size estimates in meta-analysis arising from studies reporting multiple outcome measures taken on the same sample. The three-level approach is compared with the method of robust variance estimation, and with averaging effects within studies. A simulation study is performed,…
Descriptors: Meta Analysis, Effect Size, Robustness (Statistics), Hierarchical Linear Modeling
Scott, Marc A.; Diakow, Ronli; Hill, Jennifer L.; Middleton, Joel A. – Grantee Submission, 2018
We are concerned with the unbiased estimation of a treatment effect in the context of non-experimental studies with grouped or multilevel data. When analyzing such data with this goal, practitioners typically include as many predictors (controls) as possible, in an attempt to satisfy ignorability of the treatment assignment. In the multilevel…
Descriptors: Statistical Bias, Computation, Comparative Analysis, Hierarchical Linear Modeling
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2018
Multiple imputation (MI) can be used to address missing data at Level 2 in multilevel research. In this article, we compare joint modeling (JM) and the fully conditional specification (FCS) of MI as well as different strategies for including auxiliary variables at Level 1 using either their manifest or their latent cluster means. We show with…
Descriptors: Statistical Analysis, Data, Comparative Analysis, Hierarchical Linear Modeling
Finch, Holmes – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
Descriptors: Hierarchical Linear Modeling, Comparative Analysis, Computation, Robustness (Statistics)
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Opitz, Elisabeth Moser; Grob, Urs; Wittich, Claudia; Häsel-Weide, Uta; Nührenbörger, Marcus – Learning Disabilities: A Contemporary Journal, 2018
Fostering peer interaction and shared learning is an important aim of inclusive instruction. However, it has not been established whether it is possible to offer explicit and intensive support for low achievers in inclusive settings. This longitudinal study examined whether a structured program that includes cooperative learning fosters…
Descriptors: Inclusion, Longitudinal Studies, Cooperative Learning, Competence
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders – Journal of Educational and Behavioral Statistics, 2014
Investigations of the effects of schools (or teachers) on student achievement focus on either (1) individual school effects, such as value-added analyses, or (2) school-type effects, such as comparisons of charter and public schools. Controlling for school composition by including student covariates is critical for valid estimation of either kind…
Descriptors: Hierarchical Linear Modeling, Context Effect, Economics, Educational Research
Yang, Ji Seung; Cai, Li – Journal of Educational and Behavioral Statistics, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Yang, Ji Seung; Cai, Li – Grantee Submission, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algorithm can…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Cho, Sun-Joo; Bottge, Brian A. – Grantee Submission, 2015
In a pretest-posttest cluster-randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre-test scores and other related covariates while estimating an intervention effect at post-test. In many applications in education, the total post-test and pre-test scores that ignores measurement error in the…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Pretests Posttests, Scores