Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 4 |
Descriptor
| Algorithms | 4 |
| Comparative Analysis | 4 |
| Concept Formation | 4 |
| Algebra | 3 |
| Anxiety | 3 |
| Computer Assisted Instruction | 3 |
| Computer Games | 3 |
| Correlation | 3 |
| Interaction Process Analysis | 3 |
| Learning Analytics | 3 |
| Learning Processes | 3 |
| More ▼ | |
Author
| Amisha Jindal | 3 |
| Ashish Gurung | 3 |
| Erin Ottmar | 3 |
| Ji-Eun Lee | 3 |
| Reilly Norum | 3 |
| Sanika Nitin Patki | 3 |
| Allison Starks | 1 |
| Stephanie Michelle Reich | 1 |
Publication Type
| Reports - Research | 4 |
| Journal Articles | 2 |
| Speeches/Meeting Papers | 1 |
Education Level
| Junior High Schools | 3 |
| Middle Schools | 3 |
| Secondary Education | 3 |
Audience
Location
| California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Allison Starks; Stephanie Michelle Reich – Information and Learning Sciences, 2024
Purpose: This study aims to explore children's cognitions about data flows online and their understandings of algorithms, often referred to as algorithmic literacy or algorithmic folk theories, in their everyday uses of social media and YouTube. The authors focused on children ages 8 to 11, as these are the ages when most youth acquire their own…
Descriptors: Concept Formation, Children, Social Media, Video Technology
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games

Peer reviewed
Direct link
