NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Ji Seung; Cai, Li – Journal of Educational and Behavioral Statistics, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Ji Seung; Cai, Li – Grantee Submission, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algorithm can…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Yang, Ji Seung – ProQuest LLC, 2012
Nonlinear multilevel latent variable modeling has been suggested as an alternative to traditional hierarchical linear modeling to more properly handle measurement error and sampling error issues in contextual effects modeling. However, a nonlinear multilevel latent variable model requires significant computational effort because the estimation…
Descriptors: Hierarchical Linear Modeling, Computation, Maximum Likelihood Statistics, Mathematics