NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Practitioners1
Laws, Policies, & Programs
Assessments and Surveys
SAT (College Admission Test)1
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lingbo Tong; Wen Qu; Zhiyong Zhang – Grantee Submission, 2025
Factor analysis is widely utilized to identify latent factors underlying the observed variables. This paper presents a comprehensive comparative study of two widely used methods for determining the optimal number of factors in factor analysis, the K1 rule, and parallel analysis, along with a more recently developed method, the bass-ackward method.…
Descriptors: Factor Analysis, Monte Carlo Methods, Statistical Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jang, Yoona; Hong, Sehee – Educational and Psychological Measurement, 2023
The purpose of this study was to evaluate the degree of classification quality in the basic latent class model when covariates are either included or are not included in the model. To accomplish this task, Monte Carlo simulations were conducted in which the results of models with and without a covariate were compared. Based on these simulations,…
Descriptors: Classification, Models, Prediction, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Ferron, John M.; Dedrick, Robert F.; Tan, Tony X.; Stark, Stephen – Educational and Psychological Measurement, 2021
Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population heterogeneity. This study examined the issue of covariate effects with FMM in the context of measurement invariance testing. Specifically, the impact of excluding and misspecifying covariate effects on measurement invariance testing and class enumeration…
Descriptors: Role, Error of Measurement, Monte Carlo Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Cheng; Butts, Carter T.; Hipp, John; Lakon, Cynthia M. – Sociological Methods & Research, 2022
The recent popularity of models that capture the dynamic coevolution of both network structure and behavior has driven the need for summary indices to assess the adequacy of these models to reproduce dynamic properties of scientific or practical importance. Whereas there are several existing indices for assessing the ability of the model to…
Descriptors: Models, Goodness of Fit, Comparative Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Ming; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Descriptors: Simulation, Comparative Analysis, Monte Carlo Methods, Guidelines
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Spencer, Bryden – ProQuest LLC, 2016
Value-added models are a class of growth models used in education to assign responsibility for student growth to teachers or schools. For value-added models to be used fairly, sufficient statistical precision is necessary for accurate teacher classification. Previous research indicated precision below practical limits. An alternative approach has…
Descriptors: Monte Carlo Methods, Comparative Analysis, Accuracy, High Stakes Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew – Applied Psychological Measurement, 2012
Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…
Descriptors: Intervals, Monte Carlo Methods, Computation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Hout, Michael C.; Goldinger, Stephen D.; Ferguson, Ryan W. – Journal of Experimental Psychology: General, 2013
Although traditional methods to collect similarity data (for multidimensional scaling [MDS]) are robust, they share a key shortcoming. Specifically, the possible pairwise comparisons in any set of objects grow rapidly as a function of set size. This leads to lengthy experimental protocols, or procedures that involve scaling stimulus subsets. We…
Descriptors: Visual Stimuli, Research Methodology, Problem Solving, Multidimensional Scaling
Itang'ata, Mukaria J. J. – ProQuest LLC, 2013
Often researchers face situations where comparative studies between two or more programs are necessary to make causal inferences for informed policy decision-making. Experimental designs employing randomization provide the strongest evidence for causal inferences. However, many pragmatic and ethical challenges may preclude the use of randomized…
Descriptors: Comparative Analysis, Probability, Statistical Bias, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Seybert, Jacob; Stark, Stephen – Applied Psychological Measurement, 2012
A Monte Carlo study was conducted to examine the accuracy of differential item functioning (DIF) detection using the differential functioning of items and tests (DFIT) method. Specifically, the performance of DFIT was compared using "testwide" critical values suggested by Flowers, Oshima, and Raju, based on simulations involving large numbers of…
Descriptors: Test Bias, Monte Carlo Methods, Form Classes (Languages), Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel B.; Levy, Roy; Thompson, Marilyn S.; Lu, Min; Lo, Wen-Juo – Educational and Psychological Measurement, 2012
A number of psychometricians have argued for the use of parallel analysis to determine the number of factors. However, parallel analysis must be viewed at best as a heuristic approach rather than a mathematically rigorous one. The authors suggest a revision to parallel analysis that could improve its accuracy. A Monte Carlo study is conducted to…
Descriptors: Monte Carlo Methods, Factor Structure, Data Analysis, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
McGrath, Robert E.; Walters, Glenn D. – Psychological Methods, 2012
Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Computation
Previous Page | Next Page ยป
Pages: 1  |  2  |  3