Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 16 |
Descriptor
Bayesian Statistics | 17 |
Comparative Analysis | 17 |
Factor Analysis | 17 |
Computation | 6 |
Statistical Analysis | 6 |
Maximum Likelihood Statistics | 5 |
Correlation | 4 |
Error of Measurement | 4 |
Foreign Countries | 4 |
Goodness of Fit | 4 |
Sample Size | 4 |
More ▼ |
Source
Author
Merkle, Edgar C. | 2 |
Alamri, Abeer A. | 1 |
Bijmolt, Tammo H. A. | 1 |
Blömeke, Sigrid | 1 |
Braeken, Johan | 1 |
Can, Seda | 1 |
Christine DiStefano | 1 |
Dawson, Christi L. | 1 |
Dogan, Nuri | 1 |
Eser, Mehmet Taha | 1 |
Fitzsimmons, Ellen | 1 |
More ▼ |
Publication Type
Journal Articles | 16 |
Reports - Research | 11 |
Information Analyses | 2 |
Reports - Descriptive | 2 |
Opinion Papers | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
More ▼ |
Audience
Location
Belgium | 1 |
Botswana | 1 |
Canada | 1 |
Chile | 1 |
France | 1 |
Georgia Republic | 1 |
Germany | 1 |
Malaysia | 1 |
Netherlands | 1 |
Norway | 1 |
Philippines | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Progress in International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
Teck Kiang Tan – Practical Assessment, Research & Evaluation, 2024
The procedures of carrying out factorial invariance to validate a construct were well developed to ensure the reliability of the construct that can be used across groups for comparison and analysis, yet mainly restricted to the frequentist approach. This motivates an update to incorporate the growing Bayesian approach for carrying out the Bayesian…
Descriptors: Bayesian Statistics, Factor Analysis, Programming Languages, Reliability
Eser, Mehmet Taha – International Online Journal of Education and Teaching, 2021
This study aims to compare the results of the factor analysis performed with Frequentist and Bayesian approaches. The number of sub-dimensions of the measurement tool obtained from different methods, the variation of the items in the sub-dimensions, and the fit statistics' differentiation were examined. 778 students constitute the study sample.…
Descriptors: Factor Analysis, Bayesian Statistics, Measurement Techniques, Goodness of Fit
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Sideridis, Georgios D.; Tsaousis, Ioannis; Alamri, Abeer A. – Educational and Psychological Measurement, 2020
The main thesis of the present study is to use the Bayesian structural equation modeling (BSEM) methodology of establishing approximate measurement invariance (A-MI) using data from a national examination in Saudi Arabia as an alternative to not meeting strong invariance criteria. Instead, we illustrate how to account for the absence of…
Descriptors: Bayesian Statistics, Structural Equation Models, Foreign Countries, Error of Measurement
Warren, Aaron R. – Physical Review Physics Education Research, 2020
The evaluation of hypotheses, and the ability to learn from critical reflection on experimental and theoretical tests of those hypotheses, is central to an authentic practice of physics. A large part of physics education therefore seeks to help students understand the significance of this kind of reflective practice and to develop the strategies…
Descriptors: Epistemology, Bayesian Statistics, Physics, Science Instruction
Dawson, Christi L.; Hennessey, Maeghan N.; Higley, Kelli – International Journal of Higher Education, 2016
This study investigated the perceptions of epistemic justification of students in two disparate domains of study to determine if any similarities and differences in their methods of justification exist. Two samples of students, or a total of 513 undergraduates from educational psychology (n = 193) and biology (n = 320) courses, completed a…
Descriptors: Student Attitudes, Biology, Teaching Methods, Educational Psychology
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Rindskopf, David – Psychological Methods, 2012
Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Computation
Merkle, Edgar C. – Journal of Educational and Behavioral Statistics, 2011
Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…
Descriptors: Statistical Analysis, Factor Analysis, Bayesian Statistics, Comparative Analysis
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Kooken, Janice; Welsh, Megan E.; McCoach, D. Betsy; Johnston-Wilder, Sue; Lee, Clare – Measurement and Evaluation in Counseling and Development, 2016
The Mathematical Resilience Scale measures students' attitudes toward studying mathematics, using three correlated factors: Value, Struggle, and Growth. The Mathematical Resilience Scale was developed and validated using exploratory and confirmatory factor analyses across three samples. Results provide a new approach to gauge the likelihood of…
Descriptors: Mathematics, Mathematics Instruction, Student Attitudes, Thinking Skills
Previous Page | Next Page »
Pages: 1 | 2