Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 14 |
Descriptor
Bayesian Statistics | 14 |
Comparative Analysis | 14 |
Intelligent Tutoring Systems | 14 |
Models | 8 |
Data Analysis | 7 |
Learning Processes | 6 |
Prediction | 6 |
Artificial Intelligence | 4 |
Computer Software | 4 |
Feedback (Response) | 4 |
Teaching Methods | 4 |
More ▼ |
Source
Author
Publication Type
Reports - Research | 12 |
Journal Articles | 7 |
Speeches/Meeting Papers | 6 |
Collected Works - Proceedings | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Massachusetts | 2 |
North Carolina | 2 |
Australia | 1 |
Czech Republic | 1 |
Israel | 1 |
Netherlands | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
Spain | 1 |
Spain (Barcelona) | 1 |
Utah | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Vannaprathip, Narumol; Haddawy, Peter; Schultheis, Holger; Suebnukarn, Siriwan – International Journal of Artificial Intelligence in Education, 2022
Virtual reality simulation has had a significant impact on training of psychomotor surgical skills, yet there is still a lack of work on its use to teach surgical decision making. This is particularly noteworthy given the recognized importance of decision making in achieving positive surgical outcomes. With the objective of filling this gap, we…
Descriptors: Intelligent Tutoring Systems, Decision Making, Surgery, Teaching Methods
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Sinclair, Arabella; McCurdy, Kate; Lucas, Christopher G.; Lopez, Adam; Gaševic, Dragan – International Educational Data Mining Society, 2019
Prior research has shown that, under certain conditions, Human-Agent (H-A) alignment exists to a stronger degree than that found in Human-Human (H-H) communication. In an H-H Second Language (L2) setting, evidence of alignment has been linked to learning and teaching strategy. We present a novel analysis of H-A and H-H L2 learner dialogues using…
Descriptors: Second Language Learning, Second Language Instruction, Dialogs (Language), Teaching Methods
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Baker, Ryan S.; Corbett, Albert T. – Research & Practice in Assessment, 2014
Many university leaders and faculty have the goal of promoting learning that connects across domains and prepares students with skills for their whole lives. However, as assessment emerges in higher education, many assessments focus on knowledge and skills that are specific to a single domain. Reworking assessment in higher education to focus on…
Descriptors: Educational Assessment, Data Collection, Information Retrieval, Learning Processes
Kosek, Michal; Lison, Pierre – Research-publishing.net, 2014
We present an intelligent tutoring system that lets students of Chinese learn words and grammatical constructions. It relies on a Bayesian, linguistically motivated cognitive model that represents the learner's knowledge. This model is dynamically updated given observations about the learner's behaviour in the exercises, and employed at runtime to…
Descriptors: Intelligent Tutoring Systems, Grammar, Bayesian Statistics, Second Language Learning
Sao Pedro, Michael; Jiang, Yang; Paquette, Luc; Baker, Ryan S.; Gobert, Janice – Grantee Submission, 2014
Students conducted inquiry using simulations within a rich learning environment for 4 science topics. By applying educational data mining to students' log data, assessment metrics were generated for two key inquiry skills, testing stated hypotheses and designing controlled experiments. Three models were then developed to analyze the transfer of…
Descriptors: Simulation, Transfer of Training, Bayesian Statistics, Inquiry
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Pardos, Zachary A.; Dailey, Matthew D.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
The well established, gold standard approach to finding out what works in education research is to run a randomized controlled trial (RCT) using a standard pre-test and post-test design. RCTs have been used in the intelligent tutoring community for decades to determine which questions and tutorial feedback work best. Practically speaking, however,…
Descriptors: Feedback (Response), Intelligent Tutoring Systems, Pretests Posttests, Educational Research
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries