NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xavier Ochoa; Xiaomeng Huang; Yuli Shao – Journal of Learning Analytics, 2025
Generative AI (GenAI) has the potential to revolutionize the analysis of educational data, significantly impacting learning analytics (LA). This study explores the capability of non-experts, including administrators, instructors, and students, to effectively use GenAI for descriptive LA tasks without requiring specialized knowledge in data…
Descriptors: Learning Analytics, Artificial Intelligence, Computer Software, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Grajzel, Katalin; Dumas, Denis; Acar, Selcuk – Journal of Creative Behavior, 2022
One of the best-known and most frequently used measures of creative idea generation is the Torrance Test of Creative Thinking (TTCT). The TTCT Verbal, assessing verbal ideation, contains two forms created to be used interchangeably by researchers and practitioners. However, the parallel forms reliability of the two versions of the TTCT Verbal has…
Descriptors: Test Reliability, Creative Thinking, Creativity Tests, Verbal Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Araka, Eric; Oboko, Robert; Maina, Elizaphan; Gitonga, Rhoda – International Review of Research in Open and Distributed Learning, 2022
With the increased emphasis on the benefits of self-regulated learning (SRL), it is important to make use of the huge amounts of educational data generated from online learning environments to identify the appropriate educational data mining (EDM) techniques that can help explore and understand online learners' behavioral patterns. Understanding…
Descriptors: Data Analysis, Metacognition, Comparative Analysis, Behavior Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Palit, Shamik; Roy, Chandrima Sinha – International Society for Technology, Education, and Science, 2021
Big Data Technology (BDT) and Analytics have gained immense recognition in recent years. BDT plays an essential role in various sectors. This study intends to provide a review of BDT in the education sector which includes analyzing, predicting learner's results based on behavior patterns, assessing their performance regularly. Education…
Descriptors: Learning Analytics, Data Analysis, Educational Administration, Educational Improvement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yiqiu Zhou; Jina Kang – Journal of Learning Analytics, 2023
Collaboration is a complex, multidimensional process; however, details of how multimodal features intersect and mediate group interactions have not been fully unpacked. Characterizing and analyzing the temporal patterns based on multimodal features is a challenging yet important work to advance our understanding of computer-supported collaborative…
Descriptors: Attention Control, Cooperative Learning, Data Analysis, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gril, Albane; May, Madeth; Renault, Valérie; George, Sébastien – International Association for Development of the Information Society, 2021
In Technology Enhanced Learning field, learning analytics cover multiple research challenges, among which tracking data analysis and data indicator design and visualization. Part of our research effort is dedicated to changing their design process, in order to capitalize them. This would allow us to meet a need in cost savings of design workflow…
Descriptors: Comparative Analysis, Data Analysis, Cost Effectiveness, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sanguino, Juan; Manrique, Rubén; Mariño, Olga; Linares-Vásquez, Mario; Cardozo, Nicolas – International Educational Data Mining Society, 2022
Recommender systems in educational contexts have proven effective to identify learning resources that fit the interests and needs of learners. Their usage has been of special interest in online self-learning scenarios to increase student retention and improve the learning experience. In current recommendation techniques, and in particular, in…
Descriptors: Data Analysis, Learning Analytics, Student Interests, Student Needs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sanguino, Juan Camilo; Manrique, Rubén; Mariño, Olga; Linares-Vásquez, Mario; Cardozo, Nicolás – Journal of Educational Data Mining, 2022
Recommender systems in educational contexts have proven to be effective in identifying learning resources that fit the interests and needs of learners. Their usage has been of special interest in online self-learning scenarios to increase student retention and improve the learning experience. In this article, we present the design of a hybrid…
Descriptors: Information Systems, Educational Resources, Independent Study, Online Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Peer reviewed Peer reviewed
Direct linkDirect link
Robert L. Peach; Sophia N. Yaliraki; David Lefevre; Mauricio Barahona – npj Science of Learning, 2019
The widespread adoption of online courses opens opportunities for analysing learner behaviour and optimising web-based learning adapted to observed usage. Here, we introduce a mathematical framework for the analysis of time-series of online learner engagement, which allows the identification of clusters of learners with similar online temporal…
Descriptors: Learning Analytics, Web Based Instruction, Online Courses, Learner Engagement