Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 4 |
Descriptor
| Algorithms | 4 |
| Comparative Analysis | 4 |
| Learning Processes | 4 |
| Models | 4 |
| Prediction | 4 |
| Algebra | 3 |
| Anxiety | 3 |
| Computer Assisted Instruction | 3 |
| Computer Games | 3 |
| Concept Formation | 3 |
| Correlation | 3 |
| More ▼ | |
Author
| Amisha Jindal | 3 |
| Ashish Gurung | 3 |
| Erin Ottmar | 3 |
| Ji-Eun Lee | 3 |
| Reilly Norum | 3 |
| Sanika Nitin Patki | 3 |
| Jennifer Hu | 1 |
Publication Type
| Reports - Research | 3 |
| Dissertations/Theses -… | 1 |
| Journal Articles | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Junior High Schools | 3 |
| Middle Schools | 3 |
| Secondary Education | 3 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Jennifer Hu – ProQuest LLC, 2023
Language is one of the hallmarks of intelligence, demanding explanation in a theory of human cognition. However, language presents unique practical challenges for quantitative empirical research, making many linguistic theories difficult to test at naturalistic scales. Artificial neural network language models (LMs) provide a new tool for studying…
Descriptors: Linguistic Theory, Computational Linguistics, Models, Language Research
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games

Peer reviewed
Direct link
