NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Finch, Holmes – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
Descriptors: Hierarchical Linear Modeling, Comparative Analysis, Computation, Robustness (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jin, Ying; Eason, Hershel – Journal of Educational Issues, 2016
The effects of mean ability difference (MAD) and short tests on the performance of various DIF methods have been studied extensively in previous simulation studies. Their effects, however, have not been studied under multilevel data structure. MAD was frequently observed in large-scale cross-country comparison studies where the primary sampling…
Descriptors: Test Bias, Simulation, Hierarchical Linear Modeling, Comparative Analysis
Flowers, Claudia; Test, David W.; Povenmire-Kirk, Tiana C.; Diegelmann, Karen M.; Bunch-Crump, Kimberly R.; Kemp-Inman, Amy; Goodnight, Crystalyn I. – Journal of Special Education, 2018
Communicating Interagency Relationships and Collaborative Linkages for Exceptional Students (CIRCLES) is a transition-planning service delivery model designed to guide schools in implementing interagency collaboration. This study examined the impact of CIRCLES on students' self-determination and participation in individualized education program…
Descriptors: Disabilities, Delivery Systems, Individualized Transition Plans, Agency Cooperation
Peer reviewed Peer reviewed
Direct linkDirect link
Dülmer, Hermann – Sociological Methods & Research, 2016
The factorial survey is an experimental design consisting of varying situations (vignettes) that have to be judged by respondents. For more complex research questions, it quickly becomes impossible for an individual respondent to judge all vignettes. To overcome this problem, random designs are recommended most of the time, whereas quota designs…
Descriptors: Factor Analysis, Reliability, Validity, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Ji Seung; Cai, Li – Journal of Educational and Behavioral Statistics, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Ji Seung; Cai, Li – Grantee Submission, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algorithm can…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Yang, Ji Seung; Cai, Li – National Center for Research on Evaluation, Standards, and Student Testing (CRESST), 2013
The main purpose of this study is to improve estimation efficiency in obtaining full-information maximum likelihood (FIML) estimates of contextual effects in the framework of a nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM…
Descriptors: Context Effect, Computation, Hierarchical Linear Modeling, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Pustejovsky, James E.; Hedges, Larry V.; Shadish, William R. – Journal of Educational and Behavioral Statistics, 2014
In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general…
Descriptors: Hierarchical Linear Modeling, Effect Size, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Jiao, Hong; Wang, Shudong; He, Wei – Journal of Educational Measurement, 2013
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…
Descriptors: Computation, Item Response Theory, Models, Monte Carlo Methods
Yang, Ji Seung – ProQuest LLC, 2012
Nonlinear multilevel latent variable modeling has been suggested as an alternative to traditional hierarchical linear modeling to more properly handle measurement error and sampling error issues in contextual effects modeling. However, a nonlinear multilevel latent variable model requires significant computational effort because the estimation…
Descriptors: Hierarchical Linear Modeling, Computation, Maximum Likelihood Statistics, Mathematics
Previous Page | Next Page »
Pages: 1  |  2