Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Comparative Analysis | 3 |
| Markov Processes | 3 |
| Meta Analysis | 3 |
| Monte Carlo Methods | 3 |
| Effect Size | 2 |
| Hypothesis Testing | 2 |
| Intervention | 2 |
| Models | 2 |
| Regression (Statistics) | 2 |
| Statistical Analysis | 2 |
| Bayesian Statistics | 1 |
| More ▼ | |
Publication Type
| Reports - Evaluative | 2 |
| Journal Articles | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Society for Research on Educational Effectiveness, 2013
One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…
Descriptors: Research Design, Effect Size, Intervention, Statistical Analysis
Swaminathan, Hariharan; Horner, Robert H.; Rogers, H. Jane; Sugai, George – Society for Research on Educational Effectiveness, 2012
This study is aimed at addressing the criticisms that have been leveled at the currently available statistical procedures for analyzing single subject designs (SSD). One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been…
Descriptors: Evidence, Effect Size, Research Methodology, Intervention
Peer reviewedDraper, David – Journal of Educational and Behavioral Statistics, 1995
The use of hierarchical models in social science research is discussed, with emphasis on causal inference and consideration of the limitations of hierarchical models. The increased use of Gibbs sampling and other Markov-chain Monte Carlo methods in the application of hierarchical models is recommended. (SLD)
Descriptors: Causal Models, Comparative Analysis, Markov Processes, Maximum Likelihood Statistics


