Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 34 |
Since 2006 (last 20 years) | 73 |
Descriptor
Comparative Analysis | 114 |
Monte Carlo Methods | 114 |
Models | 56 |
Statistical Analysis | 36 |
Mathematical Models | 35 |
Error of Measurement | 29 |
Item Response Theory | 29 |
Sample Size | 27 |
Maximum Likelihood Statistics | 23 |
Computation | 22 |
Correlation | 22 |
More ▼ |
Source
Author
Finch, W. Holmes | 3 |
Allen, Nancy L. | 2 |
Barcikowski, Robert S. | 2 |
Donoghue, John R. | 2 |
Jiao, Hong | 2 |
Koziol, Natalie A. | 2 |
Kromrey, Jeffrey D. | 2 |
Leite, Walter L. | 2 |
McArdle, John J. | 2 |
Monroe, Scott | 2 |
Pan, Wei | 2 |
More ▼ |
Publication Type
Journal Articles | 89 |
Reports - Research | 61 |
Reports - Evaluative | 41 |
Speeches/Meeting Papers | 15 |
Dissertations/Theses -… | 5 |
Reports - Descriptive | 3 |
Opinion Papers | 2 |
Education Level
Elementary Education | 2 |
Higher Education | 2 |
Secondary Education | 2 |
Grade 4 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 2 |
Location
Australia | 1 |
Austria | 1 |
Belgium | 1 |
Canada | 1 |
Cyprus | 1 |
Czech Republic | 1 |
Denmark | 1 |
Estonia | 1 |
Finland | 1 |
France | 1 |
Germany | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
Early Childhood Environment… | 1 |
Law School Admission Test | 1 |
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Jang, Yoona; Hong, Sehee – Educational and Psychological Measurement, 2023
The purpose of this study was to evaluate the degree of classification quality in the basic latent class model when covariates are either included or are not included in the model. To accomplish this task, Monte Carlo simulations were conducted in which the results of models with and without a covariate were compared. Based on these simulations,…
Descriptors: Classification, Models, Prediction, Sample Size
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Leszczensky, Lars; Wolbring, Tobias – Sociological Methods & Research, 2022
Does "X" affect "Y"? Answering this question is particularly difficult if reverse causality is looming. Many social scientists turn to panel data to address such questions of causal ordering. Yet even in longitudinal analyses, reverse causality threatens causal inference based on conventional panel models. Whereas the…
Descriptors: Attribution Theory, Causal Models, Comparative Analysis, Statistical Bias
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Lee, Bitna; Sohn, Wonsook – Educational and Psychological Measurement, 2022
A Monte Carlo study was conducted to compare the performance of a level-specific (LS) fit evaluation with that of a simultaneous (SI) fit evaluation in multilevel confirmatory factor analysis (MCFA) models. We extended previous studies by examining their performance under MCFA models with different factor structures across levels. In addition,…
Descriptors: Goodness of Fit, Factor Structure, Monte Carlo Methods, Factor Analysis
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Wang, Yan; Kim, Eunsook; Ferron, John M.; Dedrick, Robert F.; Tan, Tony X.; Stark, Stephen – Educational and Psychological Measurement, 2021
Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population heterogeneity. This study examined the issue of covariate effects with FMM in the context of measurement invariance testing. Specifically, the impact of excluding and misspecifying covariate effects on measurement invariance testing and class enumeration…
Descriptors: Role, Error of Measurement, Monte Carlo Methods, Models
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Arel-Bundock, Vincent – Sociological Methods & Research, 2022
Qualitative comparative analysis (QCA) is an influential methodological approach motivated by set theory and boolean logic. QCA proponents have developed algorithms to analyze quantitative data, in a bid to uncover necessary and sufficient conditions where causal relationships are complex, conditional, or asymmetric. This article uses computer…
Descriptors: Comparative Analysis, Qualitative Research, Attribution Theory, Computer Simulation
Nazari, Sanaz; Leite, Walter L.; Huggins-Manley, A. Corinne – Journal of Experimental Education, 2023
The piecewise latent growth models (PWLGMs) can be used to study changes in the growth trajectory of an outcome due to an event or condition, such as exposure to an intervention. When there are multiple outcomes of interest, a researcher may choose to fit a series of PWLGMs or a single parallel-process PWLGM. A comparison of these models is…
Descriptors: Growth Models, Statistical Analysis, Intervention, Comparative Analysis
Mohammed, M. A.; Ibrahim, A. I. N.; Siri, Z.; Noor, N. F. M. – Sociological Methods & Research, 2019
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to…
Descriptors: Monte Carlo Methods, Calculus, Sampling, Simulation
Cao, Mengyang; Song, Q. Chelsea; Tay, Louis – International Journal of Testing, 2018
There is a growing use of noncognitive assessments around the world, and recent research has posited an ideal point response process underlying such measures. A critical issue is whether the typical use of dominance approaches (e.g., average scores, factor analysis, and the Samejima's graded response model) in scoring such measures is adequate.…
Descriptors: Comparative Analysis, Item Response Theory, Factor Analysis, Models
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Finch, Holmes; French, Brian F. – Applied Measurement in Education, 2019
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact…
Descriptors: Item Response Theory, Accuracy, Test Items, Difficulty Level