NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 83 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Li Nguyen; Oliver Mayeux; Zheng Yuan – International Journal of Multilingualism, 2024
Multilingualism presents both a challenge and an opportunity for Natural Language Processing, with code-switching representing a particularly interesting problem for computational models trained on monolingual datasets. In this paper, we explore how code-switched data affects the task of Machine Translation, a task which only recently has started…
Descriptors: Code Switching (Language), Vietnamese, English (Second Language), Second Language Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Qiao Wang; Ralph L. Rose; Ayaka Sugawara; Naho Orita – Vocabulary Learning and Instruction, 2025
VocQGen is an automated tool designed to generate multiple-choice cloze (MCC) questions for vocabulary assessment in second language learning contexts. It leverages several natural language processing (NLP) tools and OpenAI's GPT-4 model to produce MCC items quickly from user-specified word lists. To evaluate its effectiveness, we used the first…
Descriptors: Vocabulary Skills, Artificial Intelligence, Computer Software, Multiple Choice Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Osama Koraishi – Language Teaching Research Quarterly, 2024
This study conducts a comprehensive quantitative evaluation of OpenAI's language model, ChatGPT 4, for grading Task 2 writing of the IELTS exam. The objective is to assess the alignment between ChatGPT's grading and that of official human raters. The analysis encompassed a multifaceted approach, including a comparison of means and reliability…
Descriptors: Second Language Learning, English (Second Language), Language Tests, Artificial Intelligence
Alexander James Kwako – ProQuest LLC, 2023
Automated assessment using Natural Language Processing (NLP) has the potential to make English speaking assessments more reliable, authentic, and accessible. Yet without careful examination, NLP may exacerbate social prejudices based on gender or native language (L1). Current NLP-based assessments are prone to such biases, yet research and…
Descriptors: Gender Bias, Natural Language Processing, Native Language, Computational Linguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Karin Tengler; Gerhard Brandhofer – Discover Education, 2025
Generative Artificial Intelligence (GenAI) models have grown increasingly popular among pre-service teachers (PSTs) and have become their constant companions, primarily assisting them in scientific writing. This article presents a study that investigates the differences and benefits of GenAI in the scientific writing process. Essays generated by…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Stanojevic, Miloš; Brennan, Jonathan R.; Dunagan, Donald; Steedman, Mark; Hale, John T. – Cognitive Science, 2023
To model behavioral and neural correlates of language comprehension in naturalistic environments, researchers have turned to broad-coverage tools from natural-language processing and machine learning. Where syntactic structure is explicitly modeled, prior work has relied predominantly on context-free grammars (CFGs), yet such formalisms are not…
Descriptors: Correlation, Language Processing, Brain Hemisphere Functions, Natural Language Processing
Yi Gui – ProQuest LLC, 2024
This study explores using transfer learning in machine learning for natural language processing (NLP) to create generic automated essay scoring (AES) models, providing instant online scoring for statewide writing assessments in K-12 education. The goal is to develop an instant online scorer that is generalizable to any prompt, addressing the…
Descriptors: Writing Tests, Natural Language Processing, Writing Evaluation, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sanosi, Abdulaziz; Abdalla, Mohamed – Australian Journal of Applied Linguistics, 2021
This study aimed to examine the potentials of the NLP approach in detecting discourse markers (DMs), namely okay, in transcribed spoken data. One hundred thirty-eight concordance lines were presented to human referees to judge the functions of okay in them as a DM or Non-DM. After that, the researchers used a Python script written according to the…
Descriptors: Natural Language Processing, Computational Linguistics, Programming Languages, Accuracy
Gloria Ashiya Katuka – ProQuest LLC, 2024
Dialogue act (DA) classification plays an important role in understanding, interpreting and modeling dialogue. Dialogue acts (DAs) represent the intended meaning of an utterance, which is associated with the illocutionary force (or the speaker's intention), such as greetings, questions, requests, statements, and agreements. In natural language…
Descriptors: Dialogs (Language), Classification, Intention, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yu, Xiaoli – International Journal of Language Testing, 2021
This study examined the development of text complexity for the past 25 years of reading comprehension passages in the National Matriculation English Test (NMET) in China. Text complexity of 206 reading passages at lexical, syntactic, and discourse levels has been measured longitudinally and compared across the years. The natural language…
Descriptors: Reading Comprehension, Reading Tests, Difficulty Level, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Changyu Yang; Adam Stivers – Journal of Education for Business, 2024
The rapid advancement of artificial intelligence (AI) has given rise to sophisticated language models that excel in understanding and generating human-like text. With the capacity to process vast amounts of information, these models effectively tackle problems across diverse domains. In this paper, we present a comparative analysis of prominent AI…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Nahatame, Shingo – Language Learning, 2021
Although text readability has traditionally been measured based on simple linguistic features, recent studies have employed natural language processing techniques to develop new readability formulas that better represent theoretical accounts of reading processes. This study evaluated the construct validity of different readability formulas,…
Descriptors: Readability, Natural Language Processing, Readability Formulas, Reading Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Sinclair, Jeanne; Jang, Eunice Eunhee; Rudzicz, Frank – Journal of Educational Psychology, 2021
Advances in machine learning (ML) are poised to contribute to our understanding of the linguistic processes associated with successful reading comprehension, which is a critical aspect of children's educational success. We used ML techniques to investigate and compare associations between children's reading comprehension and 260 linguistic…
Descriptors: Prediction, Reading Comprehension, Natural Language Processing, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Dadi Ramesh; Suresh Kumar Sanampudi – European Journal of Education, 2024
Automatic essay scoring (AES) is an essential educational application in natural language processing. This automated process will alleviate the burden by increasing the reliability and consistency of the assessment. With the advances in text embedding libraries and neural network models, AES systems achieved good results in terms of accuracy.…
Descriptors: Scoring, Essays, Writing Evaluation, Memory
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6