Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 24 |
Descriptor
Comparative Analysis | 25 |
Prediction | 25 |
Intelligent Tutoring Systems | 23 |
Data Analysis | 14 |
Models | 13 |
Computer Software | 12 |
Correlation | 8 |
Instructional Effectiveness | 8 |
Teaching Methods | 8 |
Foreign Countries | 7 |
Mathematics Instruction | 7 |
More ▼ |
Source
Author
Baker, Ryan S. | 2 |
Gross, Markus | 2 |
Adam Sales | 1 |
Aleven, Vincent | 1 |
Azevedo, Roger | 1 |
Barnes, Tiffany | 1 |
Barnes, Tiffany, Ed. | 1 |
Barollet, Théo | 1 |
Baschera, Gian-Marco | 1 |
Beck, Joseph E. | 1 |
Bouchez Tichadou, Florent | 1 |
More ▼ |
Publication Type
Reports - Research | 20 |
Journal Articles | 11 |
Speeches/Meeting Papers | 11 |
Collected Works - Proceedings | 3 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 7 |
Higher Education | 7 |
Junior High Schools | 5 |
Middle Schools | 5 |
Postsecondary Education | 5 |
Secondary Education | 5 |
Elementary Secondary Education | 3 |
High Schools | 3 |
Grade 4 | 2 |
Grade 8 | 2 |
Grade 9 | 2 |
More ▼ |
Audience
Location
Pennsylvania | 3 |
Australia | 2 |
France | 2 |
Israel | 2 |
Netherlands | 2 |
North Carolina | 2 |
Spain | 2 |
Texas | 2 |
Asia | 1 |
Brazil | 1 |
China | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
Wide Range Achievement Test | 1 |
What Works Clearinghouse Rating
Singla, Adish; Theodoropoulos, Nikitas – International Educational Data Mining Society, 2022
Block-based visual programming environments are increasingly used to introduce computing concepts to beginners. Given that programming tasks are open-ended and conceptual, novice students often struggle when learning in these environments. AI-driven programming tutors hold great promise in automatically assisting struggling students, and need…
Descriptors: Programming, Computer Science Education, Task Analysis, Introductory Courses
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
The gold-standard for evaluating the effect of an educational intervention on student outcomes is running a randomized controlled trial (RCT). However, RCTs may often be small due to logistical considerations, and resulting treatment effect estimates may lack precision. Recent methods improve experimental precision by incorporating information…
Descriptors: Intervention, Outcomes of Education, Randomized Controlled Trials, Data Use
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Paquette, Luc; Baker, Ryan S. – Interactive Learning Environments, 2019
Learning analytics research has used both knowledge engineering and machine learning methods to model student behaviors within the context of digital learning environments. In this paper, we compare these two approaches, as well as a hybrid approach combining the two types of methods. We illustrate the strengths of each approach in the context of…
Descriptors: Comparative Analysis, Student Behavior, Models, Case Studies
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Huang, Tao; Liang, Mengyi; Yang, Huali; Li, Zhi; Yu, Tao; Hu, Shengze – International Educational Data Mining Society, 2021
Influenced by COVID-19, online learning has become one of the most important forms of education in the world. In the era of intelligent education, knowledge tracing (KT) can provide excellent technical support for individualized teaching. For online learning, we come up with a new knowledge tracing method that integrates mathematical exercise…
Descriptors: Mathematics Instruction, Teaching Methods, Online Courses, Distance Education
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Price, Thomas; Zhi, Rui; Barnes, Tiffany – International Educational Data Mining Society, 2017
In this paper we present a novel, data-driven algorithm for generating feedback for students on open-ended programming problems. The feedback goes beyond next-step hints, annotating a student's whole program with suggested edits, including code that should be moved or reordered. We also build on existing work to design a methodology for evaluating…
Descriptors: Feedback (Response), Computer Software, Data Analysis, Programming
Klingler, Severin; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2015
Modeling student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for modeling the acquisition of knowledge is Bayesian Knowledge Tracing (BKT). Various extensions to the original BKT model have been proposed, among them two novel models that unify BKT and Item Response Theory (IRT). Latent Factor Knowledge…
Descriptors: Intelligent Tutoring Systems, Knowledge Level, Item Response Theory, Prediction
Crossley, Scott; Ocumpaugh, Jaclyn; Labrum, Matthew; Bradfield, Franklin; Dascalu, Mihai; Baker, Ryan S. – International Educational Data Mining Society, 2018
A number of studies have demonstrated strong links between students' language features (as found in spoken and written production) and their math performance. However, no studies have examined links between the students' language features and measures of their Math Identity. This project extends prior studies that use natural language processing…
Descriptors: Correlation, Speech Communication, Written Language, Mathematics Achievement
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Rollinson, Joseph; Brunskill, Emma – International Educational Data Mining Society, 2015
At their core, Intelligent Tutoring Systems consist of a student model and a policy. The student model captures the state of the student and the policy uses the student model to individualize instruction. Policies require different properties from the student model. For example, a mastery threshold policy requires the student model to have a way…
Descriptors: Prediction, Models, Educational Policy, Intelligent Tutoring Systems
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter – International Educational Data Mining Society, 2015
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Descriptors: Guidelines, Models, Prediction, Evaluation Methods
Previous Page | Next Page »
Pages: 1 | 2