NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Fu, Yuanshu; Wen, Zhonglin; Wang, Yang – Educational and Psychological Measurement, 2022
Composite reliability, or coefficient omega, can be estimated using structural equation modeling. Composite reliability is usually estimated under the basic independent clusters model of confirmatory factor analysis (ICM-CFA). However, due to the existence of cross-loadings, the model fit of the exploratory structural equation model (ESEM) is…
Descriptors: Comparative Analysis, Structural Equation Models, Factor Analysis, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Son, Sookyoung; Lee, Hyunjung; Jang, Yoona; Yang, Junyeong; Hong, Sehee – Educational and Psychological Measurement, 2019
The purpose of the present study is to compare nonnormal distributions (i.e., t, skew-normal, skew-t with equal skew and skew-t with unequal skew) in growth mixture models (GMMs) based on diverse conditions of a number of time points, sample sizes, and skewness for intercepts. To carry out this research, two simulation studies were conducted with…
Descriptors: Statistical Distributions, Statistical Analysis, Structural Equation Models, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael – Applied Developmental Science, 2017
Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…
Descriptors: Factor Analysis, Structural Equation Models, Correlation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ravand, Hamdollah; Baghaei, Purya – Practical Assessment, Research & Evaluation, 2016
Structural equation modeling (SEM) has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and…
Descriptors: Least Squares Statistics, Structural Equation Models, Nonparametric Statistics, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Rozendaal, Esther; Buijzen, Moniek; Valkenburg, Patti M. – Human Communication Research, 2012
This study develops and tests a model of children's critical processing of advertising. Within this model, 2 paths to reduced advertising susceptibility (i.e., attitude toward the advertised brand) were hypothesized: a cognitive path and an affective path. The secondary aim was to compare these paths for different thought verbalization processes:…
Descriptors: Advertising, Structural Equation Models, Protocol Analysis, Children
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Jiun-Yu; Kwok, Oi-man – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…
Descriptors: Structural Equation Models, Surveys, Data Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Stapleton, Laura M. – Journal of Experimental Education, 2011
In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…
Descriptors: Structural Equation Models, Simulation, Geometric Concepts, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Applied Psychological Measurement, 2010
SEMModComp, a software package for conducting likelihood ratio tests for mean and covariance structure modeling is described. The package is written in R and freely available for download or on request.
Descriptors: Structural Equation Models, Tests, Computer Software, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Incomplete nonnormal data are common occurrences in applied research. Although these 2 problems are often dealt with separately by methodologists, they often cooccur. Very little has been written about statistics appropriate for evaluating models with such data. This article extends several existing statistics for complete nonnormal data to…
Descriptors: Sample Size, Statistics, Data, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2