Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 19 |
Descriptor
Comparative Analysis | 19 |
Medical Research | 19 |
Simulation | 19 |
Meta Analysis | 15 |
Outcomes of Treatment | 15 |
Models | 8 |
Patients | 7 |
Network Analysis | 6 |
Bayesian Statistics | 5 |
Probability | 5 |
Drug Therapy | 4 |
More ▼ |
Source
Research Synthesis Methods | 19 |
Author
Chu, Haitao | 2 |
Jackson, Dan | 2 |
Kieser, Meinhard | 2 |
Aert, Robbie C. M. | 1 |
Afdhal, Nezam | 1 |
Baio, Gianluca | 1 |
Baker, Rose | 1 |
Bennetts, Margherita | 1 |
Boucher, Martin | 1 |
Carlin, Bradley P. | 1 |
Cheng, David | 1 |
More ▼ |
Publication Type
Journal Articles | 19 |
Reports - Research | 15 |
Reports - Descriptive | 3 |
Information Analyses | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Landan Zhang; Sylwia Bujkiewicz; Dan Jackson – Research Synthesis Methods, 2024
Simulated treatment comparison (STC) is an established method for performing population adjustment for the indirect comparison of two treatments, where individual patient data (IPD) are available for one trial but only aggregate level information is available for the other. The most commonly used method is what we call 'standard STC'. Here we fit…
Descriptors: Simulation, Patients, Outcomes of Treatment, Comparative Analysis
Cheng, David; Tchetgen, Eric Tchetgen; Signorovitch, James – Research Synthesis Methods, 2023
Matching-adjusted indirect comparison (MAIC) enables indirect comparisons of interventions across separate studies when individual patient-level data (IPD) are available for only one study. Due to its similarity with propensity score weighting, it has been speculated that MAIC can be combined with outcome regression models in the spirit of…
Descriptors: Comparative Analysis, Robustness (Statistics), Intervention, Patients
Shijie Ren; Sa Ren; Nicky J. Welton; Mark Strong – Research Synthesis Methods, 2024
Population-adjusted indirect comparisons, developed in the 2010s, enable comparisons between two treatments in different studies by balancing patient characteristics in the case where individual patient-level data (IPD) are available for only one study. Health technology assessment (HTA) bodies increasingly rely on these methods to inform funding…
Descriptors: Medical Research, Outcomes of Treatment, Standards, Safety
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Noma, Hisashi; Hamura, Yasuyuki; Sugasawa, Shonosuke; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has played an important role in evidence-based medicine for assessing the comparative effectiveness of multiple available treatments. The prediction interval has been one of the standard outputs in recent network meta-analysis as an effective measure that enables simultaneous assessment of uncertainties in treatment effects…
Descriptors: Intervals, Meta Analysis, Evidence Based Practice, Comparative Analysis
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Efthimiou, Orestis; White, Ian R. – Research Synthesis Methods, 2020
Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, eg, when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we…
Descriptors: Models, Meta Analysis, Network Analysis, Simulation
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2021
Traditional visualization in meta-analysis uses forest plots to illustrate the combined treatment effect, along with the respective results from primary trials. While the purpose of visualization is clear in the pairwise setting, additional treatments broaden the focus and extend the results to be illustrated in network meta-analysis. The…
Descriptors: Graphs, Visualization, Simulation, Meta Analysis
Proctor, Tanja; Zimmermann, Samuel; Seide, Svenja; Kieser, Meinhard – Research Synthesis Methods, 2022
During drug development, a biomarker is sometimes identified as separating a patient population into those with more and those with less benefit from evaluated treatments. Consequently, later studies might be targeted, while earlier ones are performed in mixed patient populations. This poses a challenge in evidence synthesis, especially if only…
Descriptors: Comparative Analysis, Meta Analysis, Patients, Medical Research
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Aert, Robbie C. M.; Jackson, Dan – Research Synthesis Methods, 2019
The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the…
Descriptors: Meta Analysis, Least Squares Statistics, Inferences, Guidelines
Mathes, Tim; Kuss, Oliver – Research Synthesis Methods, 2018
Meta-analyses often include only a small number of studies ([less than or equal to]5). Estimating between-study heterogeneity is difficult in this situation. An inaccurate estimation of heterogeneity can result in biased effect estimates and too narrow confidence intervals. The beta-binominal model has shown good statistical properties for…
Descriptors: Comparative Analysis, Meta Analysis, Probability, Statistical Analysis
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Kosch, Robin; Jung, Klaus – Research Synthesis Methods, 2019
Research synthesis, eg, by meta-analysis, is more and more considered in the area of high-dimensional data from molecular research such as gene and protein expression data, especially because most studies and experiments are performed with very small sample sizes. In contrast to most clinical and epidemiological trials, raw data are often…
Descriptors: Genetics, Meta Analysis, Molecular Structure, Scientific Research
Langan, Dean; Higgins, Julian P. T.; Simmonds, Mark – Research Synthesis Methods, 2017
Random-effects meta-analysis methods include an estimate of between-study heterogeneity variance. We present a systematic review of simulation studies comparing the performance of different estimation methods for this parameter. We summarise the performance of methods in relation to estimation of heterogeneity and of the overall effect estimate,…
Descriptors: Meta Analysis, Simulation, Comparative Analysis, Intervals
Previous Page | Next Page »
Pages: 1 | 2