Publication Date
In 2025 | 1 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 28 |
Descriptor
Comparative Analysis | 35 |
Statistical Inference | 35 |
Models | 21 |
Bayesian Statistics | 12 |
Causal Models | 9 |
Regression (Statistics) | 9 |
Statistical Analysis | 8 |
Evaluation Methods | 6 |
Probability | 6 |
Simulation | 6 |
Correlation | 5 |
More ▼ |
Source
Author
Hong Zhang | 2 |
Saijun Zhao | 2 |
Zhiyong Zhang | 2 |
Adam C. Sales | 1 |
Adam N. Glynn | 1 |
Almond, Russell | 1 |
Alrik Thiem | 1 |
Aseltine, Robert H., Jr. | 1 |
Bai, Haiyan | 1 |
Benjamini, Yoav | 1 |
Bernt Karlson, Kristian | 1 |
More ▼ |
Publication Type
Journal Articles | 29 |
Reports - Research | 21 |
Reports - Evaluative | 6 |
Reports - Descriptive | 5 |
Dissertations/Theses -… | 2 |
Opinion Papers | 2 |
Information Analyses | 1 |
Education Level
Secondary Education | 5 |
High Schools | 4 |
Higher Education | 3 |
Postsecondary Education | 2 |
Grade 10 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Researchers | 2 |
Location
Illinois | 1 |
Kenya | 1 |
Massachusetts | 1 |
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
Center for Epidemiologic… | 1 |
National Longitudinal Study… | 1 |
Program for the International… | 1 |
What Works Clearinghouse Rating
Adam N. Glynn; Miguel R. Rueda; Julian Schuessler – Sociological Methods & Research, 2024
Post-instrument covariates are often included as controls in instrumental variable (IV) analyses to address a violation of the exclusion restriction. However, we show that such analyses are subject to biases unless strong assumptions hold. Using linear constant-effects models, we present asymptotic bias formulas for three estimators (with and…
Descriptors: Causal Models, Statistical Inference, Error of Measurement, Least Squares Statistics
Alrik Thiem; Lusine Mkrtchyan – Field Methods, 2024
Qualitative comparative analysis (QCA) is an empirical research method that has gained some popularity in the social sciences. At the same time, the literature has long been convinced that QCA is prone to committing causal fallacies when confronted with non-causal data. More specifically, beyond a certain case-to-factor ratio, the method is…
Descriptors: Qualitative Research, Comparative Analysis, Research Methodology, Benchmarking
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Breen, Richard; Bernt Karlson, Kristian; Holm, Anders – Sociological Methods & Research, 2021
The Karlson-Holm-Breen (KHB) method has rapidly become popular as a way of separating the impact of confounding from rescaling when comparing conditional and unconditional parameter estimates in nonlinear probability models such as the logit and probit. In this note, we show that the same estimates can be obtained in a somewhat different way to…
Descriptors: Probability, Models, Computation, Comparative Analysis
Chattoe-Brown, Edmund – International Journal of Social Research Methodology, 2021
This article demonstrates how a technique called Agent-Based Modelling can address a significant challenge for effective interdisciplinarity. Different disciplines and research methods make divergent assertions about what a satisfactory explanation requires. However, without a unified framework analysing the implications of these differences…
Descriptors: Interdisciplinary Approach, Models, Research Methodology, Statistical Analysis
Gurkan, Gulsah; Benjamini, Yoav; Braun, Henry – Large-scale Assessments in Education, 2021
Employing nested sequences of models is a common practice when exploring the extent to which one set of variables mediates the impact of another set. Such an analysis in the context of logistic regression models confronts two challenges: (1) direct comparisons of coefficients across models are generally biased due to the changes in scale that…
Descriptors: Statistical Inference, Regression (Statistics), Adults, Models
Duxbury, Scott W. – Sociological Methods & Research, 2023
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model--even those uncorrelated with other predictors--or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot…
Descriptors: Graphs, Scaling, Research Problems, Models
Finch, Holmes – Practical Assessment, Research & Evaluation, 2022
Researchers in many disciplines work with ranking data. This data type is unique in that it is often deterministic in nature (the ranks of items "k"-1 determine the rank of item "k"), and the difference in a pair of rank scores separated by "k" units is equivalent regardless of the actual values of the two ranks in…
Descriptors: Data Analysis, Statistical Inference, Models, College Faculty
Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi – Educational and Psychological Measurement, 2017
An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…
Descriptors: Hypothesis Testing, Models, Observation, Statistical Inference
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao – International Journal of Research & Method in Education, 2016
Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…
Descriptors: Sampling, Structural Equation Models, Statistical Inference, Comparative Analysis