NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jordan M. Wheeler; Allan S. Cohen; Shiyu Wang – Journal of Educational and Behavioral Statistics, 2024
Topic models are mathematical and statistical models used to analyze textual data. The objective of topic models is to gain information about the latent semantic space of a set of related textual data. The semantic space of a set of textual data contains the relationship between documents and words and how they are used. Topic models are becoming…
Descriptors: Semantics, Educational Assessment, Evaluators, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Peabody, Michael R. – Measurement: Interdisciplinary Research and Perspectives, 2023
Many organizations utilize some form of automation in the test assembly process; either fully algorithmic or heuristically constructed. However, one issue with heuristic models is that when the test assembly problem changes the entire model may need to be re-conceptualized and recoded. In contrast, mixed-integer programming (MIP) is a mathematical…
Descriptors: Programming Languages, Algorithms, Heuristics, Mathematical Models
Yunxiao Chen; Xiaoou Li; Jingchen Liu; Gongjun Xu; Zhiliang Ying – Grantee Submission, 2017
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class…
Descriptors: Item Analysis, Classification, Graphs, Test Items
Peer reviewed Peer reviewed
Schnipke, Deborah L.; Green, Bert F. – Journal of Educational Measurement, 1995
Two item selection algorithms, one based on maximal differentiation between examinees and one based on item response theory and maximum information for each examinee, were compared in simulated linear and adaptive tests of cognitive ability. Adaptive tests based on maximum information were clearly superior. (SLD)
Descriptors: Adaptive Testing, Algorithms, Comparative Analysis, Item Response Theory
Chang, Shun-Wen; Twu, Bor-Yaun – 1998
This study investigated and compared the properties of five methods of item exposure control within the purview of estimating examinees' abilities in a computerized adaptive testing (CAT) context. Each of the exposure control algorithms was incorporated into the item selection procedure and the adaptive testing progressed based on the CAT design…
Descriptors: Adaptive Testing, Algorithms, Comparative Analysis, Computer Assisted Testing
Meisner, Richard; And Others – 1993
This paper presents a study on the generation of mathematics test items using algorithmic methods. The history of this approach is briefly reviewed and is followed by a survey of the research to date on the statistical parallelism of algorithmically generated mathematics items. Results are presented for 8 parallel test forms generated using 16…
Descriptors: Algorithms, Comparative Analysis, Computer Assisted Testing, Item Banks
Roid, Gale; Haladyna, Tom – 1978
The technology of transforming sentences from prose instruction into test questions was examined by comparing two methods of selecting sentences (keyword vs. rare singleton), two types of question words (nouns vs. adjectives), and two foil construction methods (writer's choice vs. algorithmic). Four item writers created items using each…
Descriptors: Algorithms, Cloze Procedure, Comparative Analysis, Criterion Referenced Tests
PDF pending restoration PDF pending restoration
Vale, C. David; Weiss, David J. – 1977
Twenty multiple-choice vocabulary items and 20 free-response vocabulary items were administered to 660 college students. The free-response items consisted of the stem words of the multiple-choice items. Testees were asked to respond to the free-response items with synonyms. A computer algorithm was developed to transform the numerous…
Descriptors: Ability, Adaptive Testing, Algorithms, Aptitude Tests