NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 149 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sohee Kim; Ki Lynn Cole – International Journal of Testing, 2025
This study conducted a comprehensive comparison of Item Response Theory (IRT) linking methods applied to a bifactor model, examining their performance on both multiple choice (MC) and mixed format tests within the common item nonequivalent group design framework. Four distinct multidimensional IRT linking approaches were explored, consisting of…
Descriptors: Item Response Theory, Comparative Analysis, Models, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Gyamfi, Abraham; Acquaye, Rosemary – Acta Educationis Generalis, 2023
Introduction: Item response theory (IRT) has received much attention in validation of assessment instrument because it allows the estimation of students' ability from any set of the items. Item response theory allows the difficulty and discrimination levels of each item on the test to be estimated. In the framework of IRT, item characteristics are…
Descriptors: Item Response Theory, Models, Test Items, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Measurement: Interdisciplinary Research and Perspectives, 2023
This software review discusses the capabilities of Stata to conduct item response theory modeling. The commands needed for fitting the popular one-, two-, and three-parameter logistic models are initially discussed. The procedure for testing the discrimination parameter equality in the one-parameter model is then outlined. The commands for fitting…
Descriptors: Item Response Theory, Models, Comparative Analysis, Item Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Afsharrad, Mohammad; Pishghadam, Reza; Baghaei, Purya – International Journal of Language Testing, 2023
Testing organizations are faced with increasing demand to provide subscores in addition to the total test score. However, psychometricians argue that most subscores do not have added value to be worth reporting. To have added value, subscores need to meet a number of criteria: they should be reliable, distinctive, and distinct from each other and…
Descriptors: Comparative Analysis, Scores, Value Added Models, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Jordan M. Wheeler; Allan S. Cohen; Shiyu Wang – Journal of Educational and Behavioral Statistics, 2024
Topic models are mathematical and statistical models used to analyze textual data. The objective of topic models is to gain information about the latent semantic space of a set of related textual data. The semantic space of a set of textual data contains the relationship between documents and words and how they are used. Topic models are becoming…
Descriptors: Semantics, Educational Assessment, Evaluators, Reliability
Yixi Wang – ProQuest LLC, 2020
Binary item response theory (IRT) models are widely used in educational testing data. These models are not perfect because they simplify the individual item responding process, ignore the differences among different response patterns, cannot handle multidimensionality that lay behind options within a single item, and cannot manage missing response…
Descriptors: Item Response Theory, Educational Testing, Data, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Mengxue; Heffernan, Neil; Lan, Andrew – International Educational Data Mining Society, 2023
Automated scoring of student responses to open-ended questions, including short-answer questions, has great potential to scale to a large number of responses. Recent approaches for automated scoring rely on supervised learning, i.e., training classifiers or fine-tuning language models on a small number of responses with human-provided score…
Descriptors: Scoring, Computer Assisted Testing, Mathematics Instruction, Mathematics Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Peabody, Michael R. – Measurement: Interdisciplinary Research and Perspectives, 2023
Many organizations utilize some form of automation in the test assembly process; either fully algorithmic or heuristically constructed. However, one issue with heuristic models is that when the test assembly problem changes the entire model may need to be re-conceptualized and recoded. In contrast, mixed-integer programming (MIP) is a mathematical…
Descriptors: Programming Languages, Algorithms, Heuristics, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu – Educational and Psychological Measurement, 2023
The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs)…
Descriptors: Test Items, Classification, Bayesian Statistics, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Yesiltas, Gonca; Paek, Insu – Educational and Psychological Measurement, 2020
A log-linear model (LLM) is a well-known statistical method to examine the relationship among categorical variables. This study investigated the performance of LLM in detecting differential item functioning (DIF) for polytomously scored items via simulations where various sample sizes, ability mean differences (impact), and DIF types were…
Descriptors: Simulation, Sample Size, Item Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Eaton, Philip; Johnson, Keith; Barrett, Frank; Willoughby, Shannon – Physical Review Physics Education Research, 2019
For proper assessment selection understanding the statistical similarities amongst assessments that measure the same, or very similar, topics is imperative. This study seeks to extend the comparative analysis between the brief electricity and magnetism assessment (BEMA) and the conceptual survey of electricity and magnetism (CSEM) presented by…
Descriptors: Test Theory, Item Response Theory, Comparative Analysis, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; French, Brian F. – Applied Measurement in Education, 2019
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact…
Descriptors: Item Response Theory, Accuracy, Test Items, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
von Davier, Matthias; Tyack, Lillian; Khorramdel, Lale – Educational and Psychological Measurement, 2023
Automated scoring of free drawings or images as responses has yet to be used in large-scale assessments of student achievement. In this study, we propose artificial neural networks to classify these types of graphical responses from a TIMSS 2019 item. We are comparing classification accuracy of convolutional and feed-forward approaches. Our…
Descriptors: Scoring, Networks, Artificial Intelligence, Elementary Secondary Education
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10