NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wells, Craig S.; Sireci, Stephen G. – Applied Measurement in Education, 2020
Student growth percentiles (SGPs) are currently used by several states and school districts to provide information about individual students as well as to evaluate teachers, schools, and school districts. For SGPs to be defensible for these purposes, they should be reliable. In this study, we examine the amount of systematic and random error in…
Descriptors: Growth Models, Reliability, Scores, Error Patterns
Fazlul, Ishtiaque; Koedel, Cory; Parsons, Eric; Qian, Cheng – National Center for Analysis of Longitudinal Data in Education Research (CALDER), 2021
We evaluate the feasibility of estimating test-score growth with a gap year in testing data, informing the scenario when state testing resumes after the 2020 COVID-19-induced test stoppage. Our research design is to simulate a gap year in testing using pre-COVID-19 data--when a true test gap did not occur--which facilitates comparisons of…
Descriptors: Scores, Achievement Gains, Computation, Growth Models
Peer reviewed Peer reviewed
Direct linkDirect link
Soland, James; Thum, Yeow Meng – Journal of Research on Educational Effectiveness, 2022
Sources of longitudinal achievement data are increasing thanks partially to the expansion of available interim assessments. These tests are often used to monitor the progress of students, classrooms, and schools within and across school years. Yet, few statistical models equipped to approximate the distinctly seasonal patterns in the data exist,…
Descriptors: Academic Achievement, Longitudinal Studies, Data Use, Computation
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
Schulte, Ann C.; Stevens, Joseph J.; Nese, Joseph F. T.; Yel, Nedim; Tindal, Gerald; Elliott, Stephen N. – National Center on Assessment and Accountability for Special Education, 2018
This technical report is one of a series of four technical reports that describe the results of a study comparing eight alternative models for estimating school academic achievement using data from the Arizona, North Carolina, Oregon, and Pennsylvania accountability systems. The purpose of these reports was to evaluate a broad range of models…
Descriptors: School Effectiveness, Models, Computation, Comparative Analysis
Nese, Joseph F. T.; Stevens, Joseph J.; Schulte, Ann C.; Tindal, Gerald; Yel, Nedim; Anderson, Daniel; Matta, Tyler; Elliott, Stephen N. – National Center on Assessment and Accountability for Special Education, 2018
This technical report is one of a series of four technical reports that describe the results of a study comparing eight alternative models for estimating school academic achievement using data from the Arizona, North Carolina, Oregon, and Pennsylvania accountability systems. The purpose of these reports was to evaluate a broad range of models…
Descriptors: School Effectiveness, Models, Computation, Comparative Analysis
Stevens, Joseph J.; Nese, Joseph F. T.; Schulte, Ann C.; Tindal, Gerald; Yel, Nedim; Anderson, Daniel; Matta, Tyler; Elliott, Stephen N. – National Center on Assessment and Accountability for Special Education, 2017
This technical report is one of a series of four technical reports that describe the results of a study comparing eight alternative models for estimating school academic achievement using data from the Arizona, North Carolina, Oregon, and Pennsylvania accountability systems. The purpose of these reports was to evaluate a broad range of models…
Descriptors: School Effectiveness, Models, Computation, Comparative Analysis
Schulte, Ann C.; Nese, Joseph F. T.; Stevens, Joseph J.; Yel, Nedim; Tindal, Gerald; Anderson, Daniel; Elliott, Stephen N. – National Center on Assessment and Accountability for Special Education, 2017
This technical report is one of a series of four technical reports that describe the results of a study comparing eight alternative models for estimating school academic achievement using data from the Arizona, North Carolina, Oregon, and Pennsylvania accountability systems. The purpose of these reports was to evaluate a broad range of models…
Descriptors: School Effectiveness, Models, Computation, Comparative Analysis
Schmitt, Lisa; Hutchins, Shaun – Online Submission, 2016
This report provides an overview of the process used to derive a school's growth level and summarizes 2015 math and reading/ELA growth levels for all AISD elementary, middle and high schools. Additionally, longitudinal data are provided for each school level.
Descriptors: School Districts, Academic Achievement, Elementary School Students, Middle School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Braun, Henry; Qu, Yanxuan – ETS Research Report Series, 2008
This paper reports on a study conducted to investigate the consistency of the results between 2 approaches to estimating school effectiveness through value-added modeling. Estimates of school effects from the layered model employing item response theory (IRT) scaled data are compared to estimates derived from a discrete growth model based on the…
Descriptors: Value Added Models, School Effectiveness, Robustness (Statistics), Computation