Publication Date
In 2025 | 1 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 34 |
Since 2016 (last 10 years) | 63 |
Since 2006 (last 20 years) | 118 |
Descriptor
Computation | 119 |
Statistical Inference | 119 |
Statistical Analysis | 45 |
Sampling | 39 |
Error of Measurement | 30 |
Probability | 26 |
Regression (Statistics) | 25 |
Simulation | 25 |
Models | 23 |
Monte Carlo Methods | 23 |
Bayesian Statistics | 21 |
More ▼ |
Source
Author
Padilla, Miguel A. | 5 |
Divers, Jasmin | 3 |
Dorie, Vincent | 3 |
Gelman, Andrew | 3 |
Gongjun Xu | 3 |
Kim, Jee-Seon | 3 |
Zhang, Zhiyong | 3 |
Ben-Michael, Eli | 2 |
Blackwell, Matthew | 2 |
Cai, Li | 2 |
Chun Wang | 2 |
More ▼ |
Publication Type
Reports - Research | 119 |
Journal Articles | 94 |
Numerical/Quantitative Data | 4 |
Tests/Questionnaires | 4 |
Information Analyses | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Researchers | 4 |
Location
Germany | 3 |
California | 2 |
South Korea | 2 |
Arizona | 1 |
Austria | 1 |
Canada (Montreal) | 1 |
Georgia | 1 |
Indiana | 1 |
Indonesia | 1 |
Kansas | 1 |
Massachusetts | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ari Decter-Frain; Pratik Sachdeva; Loren Collingwood; Hikari Murayama; Juandalyn Burke; Matt Barreto; Scott Henderson; Spencer Wood; Joshua Zingher – Sociological Methods & Research, 2025
We consider the cascading effects of researcher decisions throughout the process of quantifying racially polarized voting (RPV). We contrast three methods of estimating precinct racial composition, Bayesian Improved Surname Geocoding (BISG), fully Bayesian BISG, and Citizen Voting Age Population (CVAP), and two algorithms for performing ecological…
Descriptors: Voting, Computation, Racial Composition, Bayesian Statistics
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Xinhe Wang; Ben B. Hansen – Society for Research on Educational Effectiveness, 2024
Background: Clustered randomized controlled trials are commonly used to evaluate the effectiveness of treatments. Frequently, stratified or paired designs are adopted in practice. Fogarty (2018) studied variance estimators for stratified and not clustered experiments and Schochet et. al. (2022) studied that for stratified, clustered RCTs with…
Descriptors: Causal Models, Randomized Controlled Trials, Computation, Probability
Kenneth A. Frank; Qinyun Lin; Spiro Maroulis – Grantee Submission, 2023
Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses characterizing the hypothetical unobserved conditions that can alter statistical inferences have had profound impacts on public policy. One of the most ascendant techniques for sensitivity analysis is Oster's (2019) coefficient of proportionality, which…
Descriptors: Computation, Statistical Analysis, Statistical Inference, Correlation
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Mathur, Maya B.; VanderWeele, Tyler J. – Research Synthesis Methods, 2021
Meta-regression analyses usually focus on estimating and testing differences in average effect sizes between individual levels of each meta-regression covariate in turn. These metrics are useful but have limitations: they consider each covariate individually, rather than in combination, and they characterize only the mean of a potentially…
Descriptors: Regression (Statistics), Meta Analysis, Effect Size, Computation
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Thomas Cook; Mansi Wadhwa; Jingwen Zheng – Society for Research on Educational Effectiveness, 2023
Context: A perennial problem in applied statistics is the inability to justify strong claims about cause-and-effect relationships without full knowledge of the mechanism determining selection into treatment. Few research designs other than the well-implemented random assignment study meet this requirement. Researchers have proposed partial…
Descriptors: Observation, Research Design, Causal Models, Computation
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Duy Pham; Kirk Vanacore; Adam Sales; Johann Gagnon-Bartsch – Society for Research on Educational Effectiveness, 2024
Background: Education researchers typically estimate average program effects with regression; if they are interested in heterogeneous effects, they include an interaction in the model. Such models quantify and infer the influences of each covariate on the effect via interaction coefficients and their associated p-values or confidence intervals.…
Descriptors: Educational Research, Educational Researchers, Regression (Statistics), Artificial Intelligence
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation
Tianci Liu; Chun Wang; Gongjun Xu – Grantee Submission, 2022
Multidimensional Item Response Theory (MIRT) is widely used in educational and psychological assessment and evaluation. With the increasing size of modern assessment data, many existing estimation methods become computationally demanding and hence they are not scalable to big data, especially for the multidimensional three-parameter and…
Descriptors: Item Response Theory, Computation, Monte Carlo Methods, Algorithms
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis