NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy; Oh, Jimin – Journal of Experimental Education, 2023
Many generalization studies in education are typically based on a sample of 30-70 schools while the inference population is at least twenty times larger. This small sample to population size ratio limits the precision of design-based estimators of the population average treatment effect. Prior work has shown the potential of small area estimation…
Descriptors: Generalization, Computation, Probability, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Uanhoro, James O.; Wang, Yixi; O'Connell, Ann A. – Journal of Experimental Education, 2021
The standard regression technique for modeling binary response variables in education research is logistic regression. The odds ratios from these models are used to quantify and communicate variable effects. These effects are sometimes pooled together as in a meta-analysis. We argue that this process is problematic as odds ratios calculated from…
Descriptors: Probability, Effect Size, Regression (Statistics), Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Journal of Experimental Education, 2019
The analysis of covariance (ANCOVA) is a useful statistical procedure that incorporates covariate features into the adjustment of treatment effects. The consequences of omitted prognostic covariates on the statistical inferences of ANCOVA are well documented in the literature. However, the corresponding influence on sample-size calculations for…
Descriptors: Sample Size, Statistical Analysis, Computation, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Aydin, Burak; Gurel, Sungur – Journal of Experimental Education, 2019
This Monte Carlo simulation study compares methods to estimate the effects of programs with multiple versions when assignment of individuals to program version is not random. These methods use generalized propensity scores, which are predicted probabilities of receiving a particular level of the treatment conditional on covariates, to remove…
Descriptors: Probability, Weighted Scores, Monte Carlo Methods, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Journal of Experimental Education, 2018
Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…
Descriptors: Measures (Individuals), Nonparametric Statistics, Item Response Theory, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Journal of Experimental Education, 2015
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Descriptors: Statistical Analysis, Sample Size, Computation, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Bai, Haiyan – Journal of Experimental Education, 2013
Propensity score estimation plays a fundamental role in propensity score matching for reducing group selection bias in observational data. To increase the accuracy of propensity score estimation, the author developed a bootstrap propensity score. The commonly used propensity score matching methods: nearest neighbor matching, caliper matching, and…
Descriptors: Statistical Inference, Sampling, Probability, Computation