NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rock, J. A. – International Journal of Mathematical Education in Science and Technology, 2022
Every application of integration by parts can be done with a tabular method. The trick is to identify and consider each new integral in the table before deciding how to proceed. This paper supplements a classic introduction to integration by parts with a particular tabular method called Row Integration by Parts (RIP). Approaches to tabular methods…
Descriptors: Calculus, Accounting, Mathematical Formulas, Numbers
Peer reviewed Peer reviewed
Direct linkDirect link
Mingari Scarpello, Giovanni; Ritelli, Daniele – International Journal of Mathematical Education in Science and Technology, 2019
When Johann Bernoulli published his lectures on integrals in 1742, integral calculus had become very advanced since the time of their composition in 1692. Nevertheless, these lectures are of excellent clarity and simplicity even when the book deals with major problems of Mathematical Physics. Just to pique some interest, we offer a commented…
Descriptors: Educational History, Textbooks, Mathematics Education, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Yajun; Gordon, Sheldon P. – PRIMUS, 2016
This article looks at the effects that adding a single extra subdivision has on the level of accuracy of some common numerical integration routines. Instead of automatically doubling the number of subdivisions for a numerical integration rule, we investigate what happens with a systematic method of judiciously selecting one extra subdivision for…
Descriptors: Numbers, Accuracy, Computation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Vorob'ev, Evgenii M. – International Journal of Mathematical Education in Science and Technology, 2015
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of…
Descriptors: Educational Technology, Computer Uses in Education, Algebra, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Goldberg, Mayer – International Journal of Mathematical Education in Science and Technology, 2012
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
Descriptors: Calculus, Problem Solving, Computation, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2010
If f is a continuous positive-valued function defined on the closed interval from a to x and if k[subscript 0] is greater than 0, then lim[subscript k[right arrow]0[superscript +] [integral][superscript x] [subscript a] f (t)[superscript k-k[subscript 0]] dt= [integral][superscript x] [subscript a] f (t)[superscript -k[subscript 0] dt. This…
Descriptors: Calculus, Numbers, Intervals, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Bhatta, D. D. – International Journal of Mathematical Education in Science and Technology, 2007
This work presents an introductory development of fractional order derivatives and their computations. Historical development of fractional calculus is discussed. This paper presents how to obtain computational results of fractional order derivatives for some elementary functions. Computational results are illustrated in tabular and graphical…
Descriptors: Calculus, Computation, Mathematics Instruction, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Glaister, Paul – International Journal of Mathematical Education in Science & Technology, 2006
A method for generating sums of series based on simple differential operators is presented, together with a number of worked examples with interesting properties.
Descriptors: Calculus, Geometry, Problem Solving, Numbers
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Hongwei – International Journal of Mathematical Education in Science and Technology, 2002
In this note, using the method of undetermined coefficients, we obtain the power series for exp ( f ( x )) and ln ( f ( x )) by means of a simple recursion. As applications, we show how those power series can be used to reproduce and improve some well-known results in analysis. These results may be used as enrichment material in an advanced…
Descriptors: Calculus, Mathematical Formulas, Mathematics, Multiplication
Peer reviewed Peer reviewed
Direct linkDirect link
Glaister, P. – Mathematics and Computer Education, 2005
In this paper, the author gives a further simple generalization of a power series evaluation of an integral using Taylor series to derive the result. The author encourages readers to consider numerical methods to evaluate the integrals and sums. Such methods are suitable for use in courses in advanced calculus and numerical analysis.
Descriptors: Calculus, Computation, Mathematical Concepts, Generalization
Peer reviewed Peer reviewed
Councilman, Samuel; Dorn, Carl – Mathematics Teacher, 1980
Ways of using the calculator as a vehicle for investigating one aspect of the square root concept are illustrated. (MK)
Descriptors: Calculators, Calculus, Computation, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Goldberg, Mayer – International Journal of Mathematical Education in Science & Technology, 2005
In this work, we present an algorithm for computing logarithms of positive real numbers, that bears structural resemblance to the elementary school algorithm of long division. Using this algorithm, we can compute successive digits of a logarithm using a 4-operation pocket calculator. The algorithm makes no use of Taylor series or calculus, but…
Descriptors: Numbers, Calculus, Calculators, Mathematical Concepts
Peer reviewed Peer reviewed
Peterson, Gregory K. – Mathematics Teacher, 1979
A method is presented for determining cube roots on a calculator with square root facility that has a rapid rate of convergence. (MP)
Descriptors: Algorithms, Calculators, Calculus, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Yan, S. Y.; James, G. – International Journal of Mathematical Education in Science & Technology, 2006
The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…
Descriptors: Mathematics, Item Response Theory, Calculus, Multivariate Analysis
Peer reviewed Peer reviewed
Reynolds, P. – Mathematics in School, 1983
The Cockcroft Report on English Schools recommends that all schools design their syllabuses and examinations on the assumption that all students will have access to calculators. How to use calculators sensibly to improve what is taught and how curriculum content may change are discussed. (MNS)
Descriptors: Calculators, Calculus, Computation, Division