NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Pennsylvania1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
DiStefano, Christine; McDaniel, Heather L.; Zhang, Liyun; Shi, Dexin; Jiang, Zhehan – Educational and Psychological Measurement, 2019
A simulation study was conducted to investigate the model size effect when confirmatory factor analysis (CFA) models include many ordinal items. CFA models including between 15 and 120 ordinal items were analyzed with mean- and variance-adjusted weighted least squares to determine how varying sample size, number of ordered categories, and…
Descriptors: Factor Analysis, Effect Size, Data, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Peng, Chao-Ying Joanne; Chen, Li-Ting – Journal of Experimental Education, 2014
Given the long history of discussion of issues surrounding statistical testing and effect size indices and various attempts by the American Psychological Association and by the American Educational Research Association to encourage the reporting of effect size, most journals in education and psychology have witnessed an increase in effect size…
Descriptors: Effect Size, Statistical Analysis, Computation, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Rutkowski, Leslie; Zhou, Yan – Journal of Educational Measurement, 2015
Given the importance of large-scale assessments to educational policy conversations, it is critical that subpopulation achievement is estimated reliably and with sufficient precision. Despite this importance, biased subpopulation estimates have been found to occur when variables in the conditioning model side of a latent regression model contain…
Descriptors: Error of Measurement, Error Correction, Regression (Statistics), Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rutkowski, Leslie – Applied Measurement in Education, 2014
Large-scale assessment programs such as the National Assessment of Educational Progress (NAEP), Trends in International Mathematics and Science Study (TIMSS), and Programme for International Student Assessment (PISA) use a sophisticated assessment administration design called matrix sampling that minimizes the testing burden on individual…
Descriptors: Measurement, Testing, Item Sampling, Computation
Sarkar, Saurabh – ProQuest LLC, 2013
In the modern world information has become the new power. An increasing amount of efforts are being made to gather data, resources being allocated, time being invested and tools being developed. Data collection is no longer a myth; however, it remains a great challenge to create value out of the enormous data that is being collected. Data modeling…
Descriptors: Data Analysis, Data Collection, Error of Measurement, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Molenaar, Dylan; Dolan, Conor V.; de Boeck, Paul – Psychometrika, 2012
The Graded Response Model (GRM; Samejima, "Estimation of ability using a response pattern of graded scores," Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, [theta], to underlie the ordinal item scores (Takane & de Leeuw in…
Descriptors: Simulation, Regression (Statistics), Psychometrics, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Jiao, Hong; Kamata, Akihito; Wang, Shudong; Jin, Ying – Journal of Educational Measurement, 2012
The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet-based assessment, both local item dependence and local person dependence are likely to be induced.…
Descriptors: Item Response Theory, Test Items, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as…
Descriptors: Markov Processes, Longitudinal Studies, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Bing; Dalal, Siddhartha R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2012
There is widespread interest in using various statistical inference tools as a part of the evaluations for individual teachers and schools. Evaluation systems typically involve classifying hundreds or even thousands of teachers or schools according to their estimated performance. Many current evaluations are largely based on individual estimates…
Descriptors: Statistical Inference, Error of Measurement, Classification, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich – Psychological Methods, 2011
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Descriptors: Simulation, Educational Psychology, Social Sciences, Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
What Works Clearinghouse, 2014
This "What Works Clearinghouse Procedures and Standards Handbook (Version 3.0)" provides a detailed description of the standards and procedures of the What Works Clearinghouse (WWC). The remaining chapters of this Handbook are organized to take the reader through the basic steps that the WWC uses to develop a review protocol, identify…
Descriptors: Educational Research, Guides, Intervention, Classification
Previous Page | Next Page »
Pages: 1  |  2