NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)2
Since 2006 (last 20 years)10
Location
New York1
Laws, Policies, & Programs
Pell Grant Program1
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beaujean, A. Alexander – Journal of Psychoeducational Assessment, 2018
Simulation studies use computer-generated data to examine questions of interest that have traditionally been used to study properties of statistics and estimating algorithms. With the recent advent of powerful processing capabilities in affordable computers along with readily usable software, it is now feasible to use a simulation study to aid in…
Descriptors: Computer Simulation, Computation, Learning Disabilities, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand – International Journal of Mathematical Education in Science and Technology, 2017
The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data…
Descriptors: Calculus, Probability, Data Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kostadinov, Boyan – PRIMUS, 2013
This article attempts to introduce the reader to computational thinking and solving problems involving randomness. The main technique being employed is the Monte Carlo method, using the freely available software "R for Statistical Computing." The author illustrates the computer simulation approach by focusing on several problems of…
Descriptors: Computation, Monte Carlo Methods, College Mathematics, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Kelchen, Robert; Goldrick-Rab, Sara – Journal of Higher Education, 2015
The persistently low college attainment rates of youth from poor families are partly attributable to their uncertainty about college affordability. The current federal financial aid system does not provide specific information about college costs until just before college enrollment and the information is only available to students completing a…
Descriptors: Cost Effectiveness, Input Output Analysis, Federal Aid, Student Loan Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez – European Journal of Physics, 2008
This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…
Descriptors: Plastics, Monte Carlo Methods, Computer Simulation, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Belov, Dmitry I.; Armstrong, Ronald D.; Weissman, Alexander – Applied Psychological Measurement, 2008
This article presents a new algorithm for computerized adaptive testing (CAT) when content constraints are present. The algorithm is based on shadow CAT methodology to meet content constraints but applies Monte Carlo methods and provides the following advantages over shadow CAT: (a) lower maximum item exposure rates, (b) higher utilization of the…
Descriptors: Test Items, Monte Carlo Methods, Law Schools, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Briggs, Derek C.; Wilson, Mark – Journal of Educational Measurement, 2007
An approach called generalizability in item response modeling (GIRM) is introduced in this article. The GIRM approach essentially incorporates the sampling model of generalizability theory (GT) into the scaling model of item response theory (IRT) by making distributional assumptions about the relevant measurement facets. By specifying a random…
Descriptors: Markov Processes, Generalizability Theory, Item Response Theory, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Velasco, S.; Roman, F. L.; Gonzalez, A.; White, J. A. – International Journal of Mathematical Education in Science & Technology, 2006
In the nineteenth century many people tried to seek a value for the most famous irrational number, [pi], by means of an experiment known as Buffon's needle, consisting of throwing randomly a needle onto a surface ruled with straight parallel lines. Here we propose to extend this experiment in order to evaluate other irrational numbers, such as…
Descriptors: Geometric Concepts, Probability, Computer Simulation, Monte Carlo Methods
Ware, William B.; Althouse, Linda Akel – 1999
This study was designed to derive the distribution of a test statistic based on normal probability plots. The first purpose was to provide an empirical derivation of the critical values for the Line Test (LT) with an extensive computer simulation. The goal was to develop a test that is sensitive to a wide range of alternative distributions,…
Descriptors: Computation, Computer Simulation, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Hipp, John R.; Bauer, Daniel J. – Psychological Methods, 2006
Finite mixture models are well known to have poorly behaved likelihood functions featuring singularities and multiple optima. Growth mixture models may suffer from fewer of these problems, potentially benefiting from the structure imposed on the estimated class means and covariances by the specified growth model. As demonstrated here, however,…
Descriptors: Monte Carlo Methods, Maximum Likelihood Statistics, Computation, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Caulkins, Jonathan P. – Journal of Policy Analysis and Management, 2002
In this article, the author discusses the use in policy analysis of models that incorporate uncertainty. He believes that all models should consider incorporating uncertainty, but that at the same time it is important to understand that sampling variability is not usually the dominant driver of uncertainty in policy analyses. He also argues that…
Descriptors: Statistical Inference, Models, Policy Analysis, Sampling