Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
Grantee Submission | 3 |
Applied Psychological… | 1 |
Eurasian Journal of… | 1 |
International Electronic… | 1 |
Journal of Education and… | 1 |
Journal of Educational and… | 1 |
Multivariate Behavioral… | 1 |
ProQuest LLC | 1 |
Author
Amin, Bunga Dara | 1 |
Betancourt, Michael | 1 |
Browne, Michael W. | 1 |
Brubaker, Marcus A. | 1 |
Cain, Meghan K. | 1 |
Carpenter, Bob | 1 |
Dogan, C. Deha | 1 |
Gelman, Andrew | 1 |
Goodrich, Ben | 1 |
Guo, Jiqiang | 1 |
Hayes, Andrew F. | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 5 |
Reports - Descriptive | 4 |
Dissertations/Theses -… | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Audience
Location
Indonesia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Zhang, Xuemao; Maas, Zoe – International Electronic Journal of Mathematics Education, 2019
The use of computer simulations in the teaching of introductory statistics can help undergraduate students understand difficult or abstract statistics concepts. The free software environment R is a good candidate for computer simulations since it allows users to add additional functionality by defining new functions. In this paper, we illustrate…
Descriptors: Computer Simulation, Teaching Methods, Mathematics Instruction, Probability
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Dogan, C. Deha – Eurasian Journal of Educational Research, 2017
Background: Most of the studies in academic journals use p values to represent statistical significance. However, this is not a good indicator of practical significance. Although confidence intervals provide information about the precision of point estimation, they are, unfortunately, rarely used. The infrequent use of confidence intervals might…
Descriptors: Sampling, Statistical Inference, Periodicals, Intervals
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Amin, Bunga Dara; Mahmud, Alimuddin; Muris – Journal of Education and Practice, 2016
This research aims to produce a learning instrument based on hypermedia which is valid, interesting, practical, and effective as well as to know its influence on the problem based skill of students Mathematical and Science Faculty, Makassar State University. This research is a research and development at (R&D) type. The development procedure…
Descriptors: Test Construction, Science Tests, Physics, Hypermedia
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Kim, Hyun Seok John – ProQuest LLC, 2011
Cognitive diagnostic assessment (CDA) is a new theoretical framework for psychological and educational testing that is designed to provide detailed information about examinees' strengths and weaknesses in specific knowledge structures and processing skills. During the last three decades, more than a dozen psychometric models have been developed…
Descriptors: Cognitive Measurement, Diagnostic Tests, Bayesian Statistics, Statistical Inference
Hayes, Andrew F.; Preacher, Kristopher J. – Multivariate Behavioral Research, 2010
Most treatments of indirect effects and mediation in the statistical methods literature and the corresponding methods used by behavioral scientists have assumed linear relationships between variables in the causal system. Here we describe and extend a method first introduced by Stolzenberg (1980) for estimating indirect effects in models of…
Descriptors: Computation, Methods, Models, Statistical Analysis