Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 12 |
Descriptor
Computation | 13 |
Data Analysis | 13 |
Least Squares Statistics | 13 |
Regression (Statistics) | 7 |
Correlation | 4 |
Error of Measurement | 4 |
Scores | 4 |
Achievement Gains | 3 |
Comparative Analysis | 3 |
Models | 3 |
Prediction | 3 |
More ▼ |
Source
Author
Foorman, Barbara R. | 2 |
Kershaw, Sarah | 2 |
Koon, Sharon | 2 |
Petscher, Yaacov | 2 |
Tellinghuisen, Joel | 2 |
Beare, R. A. | 1 |
Beretvas, S. Natasha | 1 |
Brusco, Michael | 1 |
Dahl, Gordon | 1 |
Finch, Maria E. Hernandez | 1 |
Finch, W. Holmes | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 8 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Numerical/Quantitative Data | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 2 |
Elementary Secondary Education | 2 |
Grade 10 | 2 |
Grade 3 | 2 |
Grade 4 | 2 |
Grade 5 | 2 |
Grade 6 | 2 |
Grade 7 | 2 |
Grade 8 | 2 |
Grade 9 | 2 |
Higher Education | 2 |
More ▼ |
Audience
Location
Florida | 2 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Florida Comprehensive… | 2 |
Dynamic Indicators of Basic… | 1 |
National Survey of Student… | 1 |
SAT (College Admission Test) | 1 |
Wechsler Adult Intelligence… | 1 |
Woodcock Reading Mastery Test | 1 |
What Works Clearinghouse Rating
Brusco, Michael – INFORMS Transactions on Education, 2022
Logistic regression is one of the most fundamental tools in predictive analytics. Graduate business analytics students are often familiarized with implementation of logistic regression using Python, R, SPSS, or other software packages. However, an understanding of the underlying maximum likelihood model and the mechanics of estimation are often…
Descriptors: Regression (Statistics), Spreadsheets, Data Analysis, Prediction
Least-Squares Analysis of Data with Uncertainty in "y" and "x": Algorithms in Excel and KaleidaGraph
Tellinghuisen, Joel – Journal of Chemical Education, 2018
For the least-squares analysis of data having multiple uncertain variables, the generally accepted best solution comes from minimizing the sum of weighted squared residuals over all uncertain variables, with, for example, weights in x[subscript i] taken as inversely proportional to the variance [delta][subscript xi][superscript 2]. A complication…
Descriptors: Chemistry, Least Squares Statistics, Data Analysis, Spreadsheets
Finch, W. Holmes; Finch, Maria E. Hernandez – Practical Assessment, Research & Evaluation, 2016
Researchers and data analysts are sometimes faced with the problem of very small samples, where the number of variables approaches or exceeds the overall sample size; i.e. high dimensional data. In such cases, standard statistical models such as regression or analysis of variance cannot be used, either because the resulting parameter estimates…
Descriptors: Sample Size, Statistical Analysis, Regression (Statistics), Predictor Variables
Tellinghuisen, Joel – Journal of Chemical Education, 2015
The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…
Descriptors: Least Squares Statistics, Error of Measurement, Error Patterns, Chemistry
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Rocconi, Louis M. – Association for Institutional Research (NJ1), 2011
Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…
Descriptors: Regression (Statistics), Models, Least Squares Statistics, Data Analysis
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Reading Comprehension, Reading Achievement, Elementary School Students, Secondary School Students
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Response to Intervention, Achievement Gains, High Stakes Tests, Prediction
Beare, R. A. – International Journal of Mathematical Education in Science and Technology, 2008
Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…
Descriptors: Least Squares Statistics, Astronomy, Computation, Data Analysis
Yuan, Ke-Hai; Lu, Laura – Multivariate Behavioral Research, 2008
This article provides the theory and application of the 2-stage maximum likelihood (ML) procedure for structural equation modeling (SEM) with missing data. The validity of this procedure does not require the assumption of a normally distributed population. When the population is normally distributed and all missing data are missing at random…
Descriptors: Structural Equation Models, Validity, Data Analysis, Computation
Lu, Irene R. R.; Thomas, D. Roland – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Descriptors: Least Squares Statistics, Computation, Item Response Theory, Structural Equation Models
Dahl, Gordon; Lochner, Lance – Institute for Research on Poverty, 2009
Past estimates of the effect of family income on child development have often been plagued by endogeneity and measurement error. In this paper, we use two simulated instrumental variables strategies to estimate the causal effect of income on children's math and reading achievement. Our identification derives from the large, non-linear changes…
Descriptors: Family Income, Academic Achievement, Evidence, Tax Credits
Furlow, Carolyn F.; Beretvas, S. Natasha – Psychological Methods, 2005
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…
Descriptors: Rejection (Psychology), Monte Carlo Methods, Least Squares Statistics, Correlation