Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 9 |
Descriptor
Computation | 11 |
Error Patterns | 11 |
Monte Carlo Methods | 11 |
Simulation | 8 |
Evaluation Methods | 7 |
Models | 4 |
Sample Size | 4 |
Statistical Analysis | 4 |
Intervals | 3 |
Research Methodology | 3 |
Structural Equation Models | 3 |
More ▼ |
Source
Educational and Psychological… | 2 |
Journal of Experimental… | 2 |
Psychological Methods | 2 |
Structural Equation Modeling:… | 2 |
Applied Psychological… | 1 |
Journal of Educational… | 1 |
ProQuest LLC | 1 |
Author
Harring, Jeffrey R. | 2 |
Weiss, Brandi A. | 2 |
Bentler, Peter M. | 1 |
Chan, Daniel W.-L. | 1 |
Chan, Wai | 1 |
Enders, Craig K. | 1 |
Hsu, Jui-Chen | 1 |
Hung, Lai-Fa | 1 |
Li, Ming | 1 |
Murphy, Daniel L. | 1 |
Pituch, Keenan A. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 5 |
Reports - Evaluative | 4 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sinharay, Sandip – Journal of Educational Measurement, 2016
De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…
Descriptors: Sampling, Research Methodology, Error Patterns, Monte Carlo Methods
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming – Educational and Psychological Measurement, 2015
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Descriptors: Structural Equation Models, Statistical Analysis, Monte Carlo Methods, Computation
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Williams, Ryan T. – ProQuest LLC, 2012
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
Descriptors: Multiple Regression Analysis, Meta Analysis, Evaluation Methods, Computation
Hung, Lai-Fa – Applied Psychological Measurement, 2012
Rasch used a Poisson model to analyze errors and speed in reading tests. An important property of the Poisson distribution is that the mean and variance are equal. However, in social science research, it is very common for the variance to be greater than the mean (i.e., the data are overdispersed). This study embeds the Rasch model within an…
Descriptors: Social Science Research, Markov Processes, Reading Tests, Social Sciences
Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen – Psychological Methods, 2012
Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…
Descriptors: Structural Equation Models, Geometric Concepts, Computation, Comparative Analysis
Enders, Craig K.; Tofighi, Davood – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The purpose of this study was to examine the impact of misspecifying a growth mixture model (GMM) by assuming that Level-1 residual variances are constant across classes, when they do, in fact, vary in each subpopulation. Misspecification produced bias in the within-class growth trajectories and variance components, and estimates were…
Descriptors: Structural Equation Models, Computation, Monte Carlo Methods, Evaluation Methods
Murphy, Daniel L.; Pituch, Keenan A. – Journal of Experimental Education, 2009
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Descriptors: Sample Size, Computation, Evaluation Methods, Longitudinal Studies
Yoo, Jin Eun – Educational and Psychological Measurement, 2009
This Monte Carlo study investigates the beneficiary effect of including auxiliary variables during estimation of confirmatory factor analysis models with multiple imputation. Specifically, it examines the influence of sample size, missing rates, missingness mechanism combinations, missingness types (linear or convex), and the absence or presence…
Descriptors: Monte Carlo Methods, Research Methodology, Test Validity, Factor Analysis
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article proposes a new approach to the statistical analysis of pairwisepresent covariance structure data. The estimator is based on maximizing the complete data likelihood function, and the associated test statistic and standard errors are corrected for misspecification using Satorra-Bentler corrections. A Monte Carlo study was conducted to…
Descriptors: Evaluation Methods, Maximum Likelihood Statistics, Statistical Analysis, Monte Carlo Methods
Chan, Wai; Chan, Daniel W.-L. – Psychological Methods, 2004
The standard Pearson correlation coefficient is a biased estimator of the true population correlation, ?, when the predictor and the criterion are range restricted. To correct the bias, the correlation corrected for range restriction, r-sub(c), has been recommended, and a standard formula based on asymptotic results for estimating its standard…
Descriptors: Computation, Intervals, Sample Size, Monte Carlo Methods