Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 6 |
Descriptor
Author
Edwards, Michael C. | 3 |
Bonnet, Gerard | 1 |
Cai, Li | 1 |
Chen, Po-Hsi | 1 |
Goldstein, Harvey | 1 |
Hoshino, Takahiro | 1 |
Huang, Hung-Yu | 1 |
MacCallum, Robert C. | 1 |
Rocher, Thierry | 1 |
Shigemasu, Kazuo | 1 |
Su, Chi-Ming | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Evaluative | 4 |
Opinion Papers | 1 |
Reports - Research | 1 |
Education Level
Secondary Education | 2 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Location
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
MacCallum, Robert C.; Edwards, Michael C.; Cai, Li – Psychological Methods, 2012
Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…
Descriptors: Structural Equation Models, Bayesian Statistics, Computation, Expertise
Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming – Applied Psychological Measurement, 2013
Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…
Descriptors: Item Response Theory, Models, Vertical Organization, Bayesian Statistics
Edwards, Michael C. – Psychometrika, 2010
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Descriptors: Structural Equation Models, Markov Processes, Factor Analysis, Item Response Theory
Wirth, R. J.; Edwards, Michael C. – Psychological Methods, 2007
The rationale underlying factor analysis applies to continuous and categorical variables alike; however, the models and estimation methods for continuous (i.e., interval or ratio scale) data are not appropriate for item-level data that are categorical in nature. The authors provide a targeted review and synthesis of the item factor analysis (IFA)…
Descriptors: Structural Equation Models, Markov Processes, Item Response Theory, Factor Analysis
Hoshino, Takahiro; Shigemasu, Kazuo – Applied Psychological Measurement, 2008
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
Descriptors: Monte Carlo Methods, Markov Processes, Factor Analysis, Computation
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry – Journal of Educational and Behavioral Statistics, 2007
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Descriptors: Foreign Countries, Structural Equation Models, Markov Processes, Factor Analysis