NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Taiwan2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Longjuan; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2015
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
Descriptors: Item Response Theory, Statistical Analysis, Goodness of Fit, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R. – Educational and Psychological Measurement, 2013
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
Descriptors: Models, Statistical Analysis, Goodness of Fit, Change
Kuo, Tzu-Chun – ProQuest LLC, 2015
Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Edwards, Michael C. – Measurement: Interdisciplinary Research and Perspectives, 2013
This author has had the privilege of knowing Professor Maydeu-Olivares for almost a decade and although their paths cross only occasionally, such instances were always enjoyable and enlightening. Edwards states that Maydeu-Olivares' target article for this issue, ("Goodness-of-Fit Assessment of Item Response Theory Models") provides…
Descriptors: Goodness of Fit, Item Response Theory, Models, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R. – Educational and Psychological Measurement, 2014
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
Descriptors: Regression (Statistics), Models, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2015
Person-fit assessment may help the researcher to obtain additional information regarding the answering behavior of persons. Although several researchers examined person fit, there is a lack of research on person-fit assessment for mixed-format tests. In this article, the lz statistic and the ?2 statistic, both of which have been used for tests…
Descriptors: Test Format, Goodness of Fit, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rindskopf, David – Psychological Methods, 2012
Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Computation
Previous Page | Next Page »
Pages: 1  |  2