Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 8 |
Descriptor
Computation | 8 |
Hierarchical Linear Modeling | 8 |
Probability | 8 |
Maximum Likelihood Statistics | 3 |
Statistical Inference | 3 |
Bayesian Statistics | 2 |
Causal Models | 2 |
Classification | 2 |
Elementary Secondary Education | 2 |
Equations (Mathematics) | 2 |
Error of Measurement | 2 |
More ▼ |
Author
Brian Keller | 1 |
Chan, Wendy | 1 |
Craig Enders | 1 |
Egamaria Alacam | 1 |
Feldman, Betsy J. | 1 |
Han Du | 1 |
Hong, Guanglei | 1 |
Issa J. Dahabreh | 1 |
Jon A. Steingrimsson | 1 |
Kim, Jee-Seon | 1 |
Lyu, Weicong | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Journal Articles | 5 |
Dissertations/Theses -… | 1 |
Education Level
Elementary Secondary Education | 2 |
Grade 10 | 1 |
Grade 12 | 1 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Indiana | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Trends in International… | 1 |
What Works Clearinghouse Rating
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Qin, Xu; Hong, Guanglei – Journal of Educational and Behavioral Statistics, 2017
When a multisite randomized trial reveals between-site variation in program impact, methods are needed for further investigating heterogeneous mediation mechanisms across the sites. We conceptualize and identify a joint distribution of site-specific direct and indirect effects under the potential outcomes framework. A method-of-moments procedure…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Statistical Analysis, Probability
Rickles, Jordan Harry – ProQuest LLC, 2012
In this study I present, demonstrate, and test a method that extends the Stuart and Rubin (2008) multiple control group matching strategy to a multisite setting. Three primary phases define the proposed method: (1) a design phase, in which one uses a two-stage matching strategy to construct treatment and control groups that are well balanced along…
Descriptors: Probability, Hierarchical Linear Modeling, Computation, Outcomes of Treatment
Feldman, Betsy J.; Rabe-Hesketh, Sophia – Journal of Educational and Behavioral Statistics, 2012
In longitudinal education studies, assuming that dropout and missing data occur completely at random is often unrealistic. When the probability of dropout depends on covariates and observed responses (called "missing at random" [MAR]), or on values of responses that are missing (called "informative" or "not missing at random" [NMAR]),…
Descriptors: Dropouts, Academic Achievement, Longitudinal Studies, Computation