NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
Assessments and Surveys
Wechsler Intelligence Scale…1
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Zhehan; Raymond, Mark; DiStefano, Christine; Shi, Dexin; Liu, Ren; Sun, Junhua – Educational and Psychological Measurement, 2022
Computing confidence intervals around generalizability coefficients has long been a challenging task in generalizability theory. This is a serious practical problem because generalizability coefficients are often computed from designs where some facets have small sample sizes, and researchers have little guide regarding the trustworthiness of the…
Descriptors: Monte Carlo Methods, Intervals, Generalizability Theory, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Measurement: Interdisciplinary Research and Perspectives, 2023
This article outlines a readily applicable procedure for point and interval estimation of the population discrepancy between reliability and the popular Cronbach's coefficient alpha for unidimensional multi-component measuring instruments with uncorrelated errors, which are widely used in behavioral and social research. The method is developed…
Descriptors: Measurement, Test Reliability, Measurement Techniques, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Dan Soriano; Eli Ben-Michael; Peter Bickel; Avi Feller; Samuel D. Pimentel – Grantee Submission, 2023
Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to…
Descriptors: Statistical Analysis, Computation, Mathematical Formulas, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yoder, Paul J.; Ledford, Jennifer R.; Harbison, Amy L.; Tapp, Jon T. – Journal of Early Intervention, 2018
A simulation study that used 3,000 computer-generated event streams with known behavior rates, interval durations, and session durations was conducted to test whether the main and interaction effects of true rate and interval duration affect the error level of uncorrected and Poisson-transformed (i.e., "corrected") count as estimated by…
Descriptors: Computation, Child Behavior, Early Childhood Education, Early Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dogan, C. Deha – Eurasian Journal of Educational Research, 2017
Background: Most of the studies in academic journals use p values to represent statistical significance. However, this is not a good indicator of practical significance. Although confidence intervals provide information about the precision of point estimation, they are, unfortunately, rarely used. The infrequent use of confidence intervals might…
Descriptors: Sampling, Statistical Inference, Periodicals, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Zakszeski, Brittany N.; Hojnoski, Robin L.; Wood, Brenna K. – Topics in Early Childhood Special Education, 2017
Classroom engagement is important to young children's academic and social development. Accurate methods of capturing this behavior are needed to inform and evaluate intervention efforts. This study compared the accuracy of interval durations (i.e., 5 s, 10 s, 15 s, 20 s, 30 s, and 60 s) of momentary time sampling (MTS) in approximating the…
Descriptors: Intervals, Time, Sampling, Learner Engagement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael – American Journal of Business Education, 2015
This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…
Descriptors: Business Administration Education, Error of Measurement, Error Patterns, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Pantelis, Peter C.; Kennedy, Daniel P. – Autism: The International Journal of Research and Practice, 2016
Two-phase designs in epidemiological studies of autism prevalence introduce methodological complications that can severely limit the precision of resulting estimates. If the assumptions used to derive the prevalence estimate are invalid or if the uncertainty surrounding these assumptions is not properly accounted for in the statistical inference…
Descriptors: Foreign Countries, Pervasive Developmental Disorders, Autism, Incidence
Peer reviewed Peer reviewed
Direct linkDirect link
Reardon, Sean F.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2015
In an earlier paper, we presented methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. We demonstrated that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Reardon, Sean F.; Ho, Andrew D. – Grantee Submission, 2015
Ho and Reardon (2012) present methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. They demonstrate that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Gilliland, Dennis; Melfi, Vince – Journal of Statistics Education, 2010
Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…
Descriptors: Statistical Inference, Surveys, Intervals, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria – Multivariate Behavioral Research, 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
Descriptors: Computation, Intervals, Models, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1  |  2