Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Educational and Psychological… | 2 |
Structural Equation Modeling:… | 2 |
Autism: The International… | 1 |
Multivariate Behavioral… | 1 |
Online Submission | 1 |
Author
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Evaluative | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Researchers | 1 |
Location
South Korea | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dimitrov, Dimiter M.; Atanasov, Dimitar V. – Educational and Psychological Measurement, 2021
This study presents a latent (item response theory--like) framework of a recently developed classical approach to test scoring, equating, and item analysis, referred to as "D"-scoring method. Specifically, (a) person and item parameters are estimated under an item response function model on the "D"-scale (from 0 to 1) using…
Descriptors: Scoring, Equated Scores, Item Analysis, Item Response Theory
Custer, Michael – Online Submission, 2015
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
Descriptors: Sample Size, Item Response Theory, Computation, Accuracy
Pantelis, Peter C.; Kennedy, Daniel P. – Autism: The International Journal of Research and Practice, 2016
Two-phase designs in epidemiological studies of autism prevalence introduce methodological complications that can severely limit the precision of resulting estimates. If the assumptions used to derive the prevalence estimate are invalid or if the uncertainty surrounding these assumptions is not properly accounted for in the statistical inference…
Descriptors: Foreign Countries, Pervasive Developmental Disorders, Autism, Incidence
Bandalos, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This study examined the efficacy of 4 different parceling methods for modeling categorical data with 2, 3, and 4 categories and with normal, moderately nonnormal, and severely nonnormal distributions. The parceling methods investigated were isolated parceling in which items were parceled with other items sharing the same source of variance, and…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Classification
Sass, Daniel A.; Smith, Philip L. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Structural equation modeling allows several methods of estimating the disattenuated association between 2 or more latent variables (i.e., the measurement model). In one common approach, measurement models are specified using item parcels as indicators of latent constructs. Item parcels versus original items are often used as indicators in these…
Descriptors: Structural Equation Models, Item Analysis, Error of Measurement, Measures (Individuals)
Hartig, Johannes; Holzel, Britta; Moosbrugger, Helfried – Multivariate Behavioral Research, 2007
Numerous studies have shown increasing item reliabilities as an effect of the item position in personality scales. Traditionally, these context effects are analyzed based on item-total correlations. This approach neglects that trends in item reliabilities can be caused either by an increase in true score variance or by a decrease in error…
Descriptors: True Scores, Error of Measurement, Structural Equation Models, Simulation
Enders, Craig K. – Educational and Psychological Measurement, 2004
A method for incorporating maximum likelihood (ML) estimation into reliability analyses with item-level missing data is outlined. An ML estimate of the covariance matrix is first obtained using the expectation maximization (EM) algorithm, and coefficient alpha is subsequently computed using standard formulae. A simulation study demonstrated that…
Descriptors: Intervals, Simulation, Test Reliability, Computation