NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nam, Yeji; Hong, Sehee – Educational and Psychological Measurement, 2021
This study investigated the extent to which class-specific parameter estimates are biased by the within-class normality assumption in nonnormal growth mixture modeling (GMM). Monte Carlo simulations for nonnormal GMM were conducted to analyze and compare two strategies for obtaining unbiased parameter estimates: relaxing the within-class normality…
Descriptors: Probability, Models, Statistical Analysis, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Kupzyk, Kevin A.; Beal, Sarah J. – Journal of Early Adolescence, 2017
In order to investigate causality in situations where random assignment is not possible, propensity scores can be used in regression adjustment, stratification, inverse-probability treatment weighting, or matching. The basic concepts behind propensity scores have been extensively described. When data are longitudinal or missing, the estimation and…
Descriptors: Probability, Longitudinal Studies, Data, Computation
Bishop, Crystal D.; Leite, Walter L.; Snyder, Patricia A. – Journal of Early Intervention, 2018
Data sets from large-scale longitudinal surveys involving young children and families have become available for secondary analysis by researchers in a variety of fields. Researchers in early intervention have conducted secondary analyses of such data sets to explore relationships between nonmalleable and malleable factors and child outcomes, and…
Descriptors: Probability, Weighted Scores, Statistical Bias, Data Analysis
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stuart, Elizabeth A.; Dong, Nianbo; Lenis, David – Society for Research on Educational Effectiveness, 2016
Complex surveys are often used to estimate causal effects regarding the effects of interventions or exposures of interest. Propensity scores (Rosenbaum & Rubin, 1983) have emerged as one popular and effective tool for causal inference in non-experimental studies, as they can help ensure that groups being compared are similar with respect to a…
Descriptors: Outcomes of Treatment, Probability, Surveys, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Xiang; Xie, Yu – Sociological Methods & Research, 2016
Since the seminal introduction of the propensity score (PS) by Rosenbaum and Rubin, PS-based methods have been widely used for drawing causal inferences in the behavioral and social sciences. However, the PS approach depends on the ignorability assumption: there are no unobserved confounders once observed covariates are taken into account. For…
Descriptors: Probability, Statistical Inference, Comparative Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steiner, Peter M.; Cook, Thomas D.; Li, Wei; Clark, M. H. – Journal of Research on Educational Effectiveness, 2015
In observational studies, selection bias will be completely removed only if the selection mechanism is ignorable, namely, all confounders of treatment selection and potential outcomes are reliably measured. Ideally, well-grounded substantive theories about the selection process and outcome-generating model are used to generate the sample of…
Descriptors: Quasiexperimental Design, Bias, Selection, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Kretschmann, Julia; Vock, Miriam; Lüdtke, Oliver – Journal of Educational Psychology, 2014
Using German data, we examined the effects of one specific type of acceleration--grade skipping--on academic performance. Prior research on the effects of acceleration has suffered from methodological restrictions, especially due to a lack of appropriate comparison groups and a priori measurements. For this reason, propensity score matching was…
Descriptors: Foreign Countries, Academic Achievement, Elementary School Students, Acceleration (Education)
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Beal, Sarah J.; Kupzyk, Kevin A. – Journal of Early Adolescence, 2014
The use of propensity scores as a method to promote causality in studies that cannot use random assignment has increased dramatically since its original publication in 1983. While the utility of these approaches is important, the concepts underlying their use are complex. The purpose of this article is to provide a basic tutorial for conducting…
Descriptors: Probability, Statistical Analysis, Regression (Statistics), Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Köhler, Carmen; Pohl, Steffi; Carstensen, Claus H. – Educational and Psychological Measurement, 2015
When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically…
Descriptors: Competence, Tests, Evaluation Methods, Adults
Thompson, Jason – ProQuest LLC, 2017
Educational attainment sits at the core of research on social stratification in the United States. An extensive literature details the inequalities in access to levels of education, the socioeconomic rewards conferred upon those reaching higher levels of schooling, and the prospects for social mobility among those able to attain a college degree.…
Descriptors: Postsecondary Education, Selective Admission, Social Stratification, Social Mobility
Peer reviewed Peer reviewed
Direct linkDirect link
Bai, Haiyan – Journal of Experimental Education, 2013
Propensity score estimation plays a fundamental role in propensity score matching for reducing group selection bias in observational data. To increase the accuracy of propensity score estimation, the author developed a bootstrap propensity score. The commonly used propensity score matching methods: nearest neighbor matching, caliper matching, and…
Descriptors: Statistical Inference, Sampling, Probability, Computation
Previous Page | Next Page »
Pages: 1  |  2