Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 48 |
Descriptor
Bayesian Statistics | 53 |
Computation | 53 |
Maximum Likelihood Statistics | 53 |
Item Response Theory | 20 |
Statistical Analysis | 17 |
Models | 16 |
Monte Carlo Methods | 16 |
Simulation | 14 |
Comparative Analysis | 12 |
Test Items | 11 |
Equations (Mathematics) | 10 |
More ▼ |
Source
Author
Gelman, Andrew | 4 |
Chung, Yeojin | 3 |
Dorie, Vincent | 3 |
Rabe-Hesketh, Sophia | 3 |
Akihito Kamata | 2 |
Cornelis Potgieter | 2 |
He, Wei | 2 |
Kilic, Abdullah Faruk | 2 |
Liu, Jingchen | 2 |
Magis, David | 2 |
Natesan, Prathiba | 2 |
More ▼ |
Publication Type
Journal Articles | 47 |
Reports - Research | 40 |
Reports - Evaluative | 7 |
Reports - Descriptive | 4 |
Dissertations/Theses -… | 2 |
Guides - Non-Classroom | 1 |
Education Level
Early Childhood Education | 2 |
Elementary Education | 2 |
High Schools | 2 |
Higher Education | 2 |
Grade 1 | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 4 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Researchers | 2 |
Practitioners | 1 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Grantee Submission, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. (2020) estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores,…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Journal of Educational Measurement, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores, including…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Kohli, Nidhi; Peralta, Yadira; Zopluoglu, Cengiz; Davison, Mark L. – International Journal of Behavioral Development, 2018
Piecewise mixed-effects models are useful for analyzing longitudinal educational and psychological data sets to model segmented change over time. These models offer an attractive alternative to commonly used quadratic and higher-order polynomial models because the coefficients obtained from fitting the model have meaningful substantive…
Descriptors: Hierarchical Linear Modeling, Longitudinal Studies, Maximum Likelihood Statistics, Bayesian Statistics
Ning, Ling; Luo, Wen – Journal of Experimental Education, 2018
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
Descriptors: Statistical Analysis, Models, Classification, Comparative Analysis
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference