Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 13 |
Descriptor
Computation | 16 |
Meta Analysis | 16 |
Monte Carlo Methods | 16 |
Effect Size | 6 |
Statistical Bias | 5 |
Correlation | 4 |
Error of Measurement | 4 |
Sample Size | 4 |
Simulation | 4 |
Statistical Analysis | 4 |
Case Studies | 3 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 13 |
Reports - Research | 10 |
Reports - Evaluative | 3 |
Information Analyses | 2 |
Dissertations/Theses -… | 1 |
Numerical/Quantitative Data | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2023
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In…
Descriptors: Sample Size, Computation, Meta Analysis, Bayesian Statistics
Poom, Leo; af Wåhlberg, Anders – Research Synthesis Methods, 2022
In meta-analysis, effect sizes often need to be converted into a common metric. For this purpose conversion formulas have been constructed; some are exact, others are approximations whose accuracy has not yet been systematically tested. We performed Monte Carlo simulations where samples with pre-specified population correlations between the…
Descriptors: Meta Analysis, Effect Size, Mathematical Formulas, Monte Carlo Methods
Huang, Hening – Research Synthesis Methods, 2023
Many statistical methods (estimators) are available for estimating the consensus value (or average effect) and heterogeneity variance in interlaboratory studies or meta-analyses. These estimators are all valid because they are developed from or supported by certain statistical principles. However, no estimator can be perfect and must have error or…
Descriptors: Statistical Analysis, Computation, Measurement Techniques, Meta Analysis
Pustejovsky, James E. – Grantee Submission, 2018
A wide variety of effect size indices have been proposed for quantifying the magnitude of treatment effects in single-case designs. Commonly used measures include parametric indices such as the standardized mean difference, as well as non-overlap measures such as the percentage of non-overlapping data, improvement rate difference, and non-overlap…
Descriptors: Effect Size, Measurement Techniques, Monte Carlo Methods, Observation
Joo, Seang-hwane; Wang, Yan; Ferron, John M. – AERA Online Paper Repository, 2017
Multiple-baseline studies provide meta-analysts the opportunity to compute effect sizes based on either within-series comparisons of treatment phase to baseline phase observations, or time specific between-series comparisons of observations from those that have started treatment to observations of those that are still in baseline. The advantage of…
Descriptors: Meta Analysis, Effect Size, Hierarchical Linear Modeling, Computation
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2016
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Computation, Statistical Bias
López-López, José Antonio; Botella, Juan; Sánchez-Meca, Julio; Marín-Martínez, Fulgencio – Journal of Educational and Behavioral Statistics, 2013
Since heterogeneity between reliability coefficients is usually found in reliability generalization studies, moderator analyses constitute a crucial step for that meta-analytic approach. In this study, different procedures for conducting mixed-effects meta-regression analyses were compared. Specifically, four transformation methods for the…
Descriptors: Reliability, Generalization, Meta Analysis, Regression (Statistics)
Williams, Ryan T. – ProQuest LLC, 2012
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
Descriptors: Multiple Regression Analysis, Meta Analysis, Evaluation Methods, Computation
Marin-Martinez, Fulgencio; Sanchez-Meca, Julio – Educational and Psychological Measurement, 2010
Most of the statistical procedures in meta-analysis are based on the estimation of average effect sizes from a set of primary studies. The optimal weight for averaging a set of independent effect sizes is the inverse variance of each effect size, but in practice these weights have to be estimated, being affected by sampling error. When assuming a…
Descriptors: Meta Analysis, Sample Size, Effect Size, Monte Carlo Methods
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2008
Monte Carlo studies of several fixed-effects methods for combining and comparing correlation matrices have shown that two refinements improve estimation and inference substantially. With rare exception, however, these simulations have involved homogeneous data analyzed using conditional meta-analytic procedures. The present study builds on…
Descriptors: Monte Carlo Methods, Correlation, Matrices, Computation
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Psychological Methods, 2008
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account…
Descriptors: Intervals, Monte Carlo Methods, Meta Analysis, Effect Size
Price, Larry R.; Laird, Angela R.; Fox, Peter T.; Ingham, Roger J. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a "true" or population path model was then…
Descriptors: Sample Size, Monte Carlo Methods, Structural Equation Models, Markov Processes
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2007
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Descriptors: Monte Carlo Methods, Correlation, Meta Analysis, Matrices

Martinussen, Monica; Bjornstad, Jan F. – Educational and Psychological Measurement, 1999
Studied the effect of including nonindependent correlations in the meta-analysis method of J. Hunter and F. Schmidt on the estimated population standard deviation. Evaluation indicates that the Hunter and Schmidt method will underestimate the true population standard deviation. Developed new methods to correct for this and illustrated the methods…
Descriptors: Case Studies, Computation, Correlation, Meta Analysis
Viechtbauer, Wolfgang – Journal of Educational and Behavioral Statistics, 2005
The meta-analytic random effects model assumes that the variability in effect size estimates drawn from a set of studies can be decomposed into two parts: heterogeneity due to random population effects and sampling variance. In this context, the usual goal is to estimate the central tendency and the amount of heterogeneity in the population effect…
Descriptors: Bias, Meta Analysis, Models, Effect Size
Previous Page | Next Page »
Pages: 1 | 2