NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas Cook; Mansi Wadhwa; Jingwen Zheng – Society for Research on Educational Effectiveness, 2023
Context: A perennial problem in applied statistics is the inability to justify strong claims about cause-and-effect relationships without full knowledge of the mechanism determining selection into treatment. Few research designs other than the well-implemented random assignment study meet this requirement. Researchers have proposed partial…
Descriptors: Observation, Research Design, Causal Models, Computation
Dorie, Vincent; Hill, Jennifer; Shalit, Uri; Scott, Marc; Cervone, Daniel – Grantee Submission, 2018
Statisticians have made great progress in creating methods that reduce our reliance on parametric assumptions. However this explosion in research has resulted in a breadth of inferential strategies that both create opportunities for more reliable inference as well as complicate the choices that an applied researcher has to make and defend.…
Descriptors: Statistical Inference, Simulation, Causal Models, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Steiner, Peter M.; Cook, Thomas D.; Li, Wei; Clark, M. H. – Journal of Research on Educational Effectiveness, 2015
In observational studies, selection bias will be completely removed only if the selection mechanism is ignorable, namely, all confounders of treatment selection and potential outcomes are reliably measured. Ideally, well-grounded substantive theories about the selection process and outcome-generating model are used to generate the sample of…
Descriptors: Quasiexperimental Design, Bias, Selection, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Journal of Experimental Psychology: General, 2011
Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…
Descriptors: Bayesian Statistics, Statistical Inference, Models, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Gu, Fei; Skorupski, William P.; Hoyle, Larry; Kingston, Neal M. – Applied Psychological Measurement, 2011
Ramsay-curve item response theory (RC-IRT) is a nonparametric procedure that estimates the latent trait using splines, and no distributional assumption about the latent trait is required. For item parameters of the two-parameter logistic (2-PL), three-parameter logistic (3-PL), and polytomous IRT models, RC-IRT can provide more accurate estimates…
Descriptors: Intervals, Item Response Theory, Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Psychological Review, 2009
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…
Descriptors: Causal Models, Prior Learning, Logical Thinking, Statistical Inference