Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 9 |
Since 2016 (last 10 years) | 15 |
Since 2006 (last 20 years) | 39 |
Descriptor
Computation | 42 |
Probability | 42 |
Statistical Distributions | 42 |
Statistical Analysis | 13 |
Models | 10 |
Scores | 8 |
Statistics | 7 |
Bayesian Statistics | 6 |
Error of Measurement | 6 |
Academic Achievement | 5 |
Computer Software | 5 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 30 |
Reports - Research | 24 |
Reports - Descriptive | 9 |
Reports - Evaluative | 7 |
Dissertations/Theses -… | 2 |
Speeches/Meeting Papers | 2 |
Numerical/Quantitative Data | 1 |
Education Level
Higher Education | 6 |
High Schools | 2 |
Postsecondary Education | 2 |
Elementary Education | 1 |
Secondary Education | 1 |
Audience
Teachers | 1 |
Location
Brazil | 1 |
Florida | 1 |
India | 1 |
Louisiana | 1 |
Missouri | 1 |
New York (New York) | 1 |
Pakistan | 1 |
Texas | 1 |
Thailand | 1 |
Washington | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 3 |
National Longitudinal Study… | 1 |
Teaching and Learning… | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Donoghue, John R.; McClellan, Catherine A.; Hess, Melinda R. – ETS Research Report Series, 2022
When constructed-response items are administered for a second time, it is necessary to evaluate whether the current Time B administration's raters have drifted from the scoring of the original administration at Time A. To study this, Time A papers are sampled and rescored by Time B scorers. Commonly the scores are compared using the proportion of…
Descriptors: Item Response Theory, Test Construction, Scoring, Testing
Zopluoglu, Cengiz – International Journal of Assessment Tools in Education, 2019
Unusual response similarity among test takers may occur in testing data and be an indicator of potential test fraud (e.g., examinees copy responses from other examinees, send text messages or pre-arranged signals among themselves for the correct response, item pre-knowledge). One index to measure the degree of similarity between two response…
Descriptors: Item Response Theory, Computation, Cheating, Measurement Techniques
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Nam, Yeji; Hong, Sehee – Educational and Psychological Measurement, 2021
This study investigated the extent to which class-specific parameter estimates are biased by the within-class normality assumption in nonnormal growth mixture modeling (GMM). Monte Carlo simulations for nonnormal GMM were conducted to analyze and compare two strategies for obtaining unbiased parameter estimates: relaxing the within-class normality…
Descriptors: Probability, Models, Statistical Analysis, Statistical Distributions
Smyk, Magdalena; Tyrowicz, Joanna; van der Velde, Lucas – Sociological Methods & Research, 2021
We investigate the reliability of data from the Wage Indicator (WI), the largest online survey on earnings and working conditions. Comparing WI to nationally representative data sources for 17 countries reveals that participants of WI are not likely to have been representatively drawn from the respective populations. Previous literature has…
Descriptors: Online Surveys, Data, Reliability, Wages
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Paul T. von Hippel; Laura Bellows – Annenberg Institute for School Reform at Brown University, 2020
At least sixteen US states have taken steps toward holding teacher preparation programs (TPPs) accountable for teacher value-added to student test scores. Yet it is unclear whether teacher quality differences between TPPs are large enough to make an accountability system worthwhile. Several statistical practices can make differences between TPPs…
Descriptors: Teacher Effectiveness, Teacher Education Programs, Scores, Accountability
Young, Cristobal; Holsteen, Katherine – Sociological Methods & Research, 2017
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
Descriptors: Models, Ambiguity (Context), Robustness (Statistics), Social Science Research
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models