NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 25 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Pashley, Nicole E.; Miratrix, Luke W. – Journal of Educational and Behavioral Statistics, 2021
Evaluating blocked randomized experiments from a potential outcomes perspective has two primary branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide different…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Pashley, Nicole E.; Miratrix, Luke W. – Grantee Submission, 2019
In the causal inference literature, evaluating blocking from a potential outcomes perspective has two main branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dogan, C. Deha – Eurasian Journal of Educational Research, 2017
Background: Most of the studies in academic journals use p values to represent statistical significance. However, this is not a good indicator of practical significance. Although confidence intervals provide information about the precision of point estimation, they are, unfortunately, rarely used. The infrequent use of confidence intervals might…
Descriptors: Sampling, Statistical Inference, Periodicals, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Weiss, Michael J.; Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Research on Educational Effectiveness, 2016
In the "individually randomized group treatment" (IRGT) experimental design, individuals are first randomly assigned to a treatment arm or a control arm, but then within each arm, are grouped together (e.g., within classrooms/schools, through shared case managers, in group therapy sessions, through shared doctors, etc.) to receive…
Descriptors: Randomized Controlled Trials, Error of Measurement, Control Groups, Experimental Groups
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moraveji, Behjat; Jafarian, Koorosh – International Journal of Education and Literacy Studies, 2014
The aim of this paper is to provide an introduction of new imputation algorithms for estimating missing values from official statistics in larger data sets of data pre-processing, or outliers. The goal is to propose a new algorithm called IRMI (iterative robust model-based imputation). This algorithm is able to deal with all challenges like…
Descriptors: Mathematics, Computation, Robustness (Statistics), Regression (Statistics)
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Pantelis, Peter C.; Kennedy, Daniel P. – Autism: The International Journal of Research and Practice, 2016
Two-phase designs in epidemiological studies of autism prevalence introduce methodological complications that can severely limit the precision of resulting estimates. If the assumptions used to derive the prevalence estimate are invalid or if the uncertainty surrounding these assumptions is not properly accounted for in the statistical inference…
Descriptors: Foreign Countries, Pervasive Developmental Disorders, Autism, Incidence
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P. – MDRC, 2014
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Research Design, Quasiexperimental Design, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Reardon, Sean F.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2015
In an earlier paper, we presented methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. We demonstrated that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Reardon, Sean F.; Ho, Andrew D. – Grantee Submission, 2015
Ho and Reardon (2012) present methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. They demonstrate that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Cheema, Jehanzeb R. – Review of Educational Research, 2014
Missing data are a common occurrence in survey-based research studies in education, and the way missing values are handled can significantly affect the results of analyses based on such data. Despite known problems with performance of some missing data handling methods, such as mean imputation, many researchers in education continue to use those…
Descriptors: Educational Research, Data, Data Collection, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Psychometrika, 2012
The study of prediction bias is important and the last five decades include research studies that examined whether test scores differentially predict academic or employment performance. Previous studies used ordinary least squares (OLS) to assess whether groups differ in intercepts and slopes. This study shows that OLS yields inaccurate inferences…
Descriptors: Academic Achievement, Prediction, Measurement, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Previous Page | Next Page ยป
Pages: 1  |  2