Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 14 |
Descriptor
Computation | 16 |
Monte Carlo Methods | 16 |
Research Methodology | 16 |
Simulation | 8 |
Evaluation Methods | 7 |
Sampling | 5 |
Effect Size | 4 |
Models | 4 |
Sample Size | 4 |
Statistical Analysis | 4 |
Correlation | 3 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 15 |
Reports - Research | 11 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Opinion Papers | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 2 |
Location
South Korea | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kim, Stella Y.; Lee, Won-Chan – Journal of Educational Measurement, 2023
The current study proposed several variants of simple-structure multidimensional item response theory equating procedures. Four distinct sets of data were used to demonstrate feasibility of proposed equating methods for two different equating designs: a random groups design and a common-item nonequivalent groups design. Findings indicated some…
Descriptors: Item Response Theory, Equated Scores, Monte Carlo Methods, Research Methodology
Sinharay, Sandip – Journal of Educational Measurement, 2016
De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…
Descriptors: Sampling, Research Methodology, Error Patterns, Monte Carlo Methods
Beaujean, A. Alexander – Practical Assessment, Research & Evaluation, 2014
A common question asked by researchers using regression models is, What sample size is needed for my study? While there are formulae to estimate sample sizes, their assumptions are often not met in the collected data. A more realistic approach to sample size determination requires more information such as the model of interest, strength of the…
Descriptors: Regression (Statistics), Sample Size, Sampling, Monte Carlo Methods
Pantelis, Peter C.; Kennedy, Daniel P. – Autism: The International Journal of Research and Practice, 2016
Two-phase designs in epidemiological studies of autism prevalence introduce methodological complications that can severely limit the precision of resulting estimates. If the assumptions used to derive the prevalence estimate are invalid or if the uncertainty surrounding these assumptions is not properly accounted for in the statistical inference…
Descriptors: Foreign Countries, Pervasive Developmental Disorders, Autism, Incidence
Shieh, Gwowen; Jan, Show-Li – Journal of Experimental Education, 2013
The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…
Descriptors: Sampling, Statistical Analysis, Computation, Research Methodology
Dong, Nianbo – Society for Research on Educational Effectiveness, 2011
The purpose of this study is through Monte Carlo simulation to compare several propensity score methods in approximating factorial experimental design and identify best approaches in reducing bias and mean square error of parameter estimates of the main and interaction effects of two factors. Previous studies focused more on unbiased estimates of…
Descriptors: Research Design, Probability, Monte Carlo Methods, Simulation
Sanborn, Adam N.; Griffiths, Thomas L.; Shiffrin, Richard M. – Cognitive Psychology, 2010
A key challenge for cognitive psychology is the investigation of mental representations, such as object categories, subjective probabilities, choice utilities, and memory traces. In many cases, these representations can be expressed as a non-negative function defined over a set of objects. We present a behavioral method for estimating these…
Descriptors: Markov Processes, Multidimensional Scaling, Cognitive Psychology, Probability
Young, Michael E.; Clark, M. H.; Goffus, Andrea; Hoane, Michael R. – Learning and Motivation, 2009
Morris water maze data are most commonly analyzed using repeated measures analysis of variance in which daily test sessions are analyzed as an unordered categorical variable. This approach, however, may lack power, relies heavily on post hoc tests of daily performance that can complicate interpretation, and does not target the nonlinear trends…
Descriptors: Monte Carlo Methods, Regression (Statistics), Research Methodology, Simulation
Murphy, Daniel L.; Pituch, Keenan A. – Journal of Experimental Education, 2009
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Descriptors: Sample Size, Computation, Evaluation Methods, Longitudinal Studies
Yoo, Jin Eun – Educational and Psychological Measurement, 2009
This Monte Carlo study investigates the beneficiary effect of including auxiliary variables during estimation of confirmatory factor analysis models with multiple imputation. Specifically, it examines the influence of sample size, missing rates, missingness mechanism combinations, missingness types (linear or convex), and the absence or presence…
Descriptors: Monte Carlo Methods, Research Methodology, Test Validity, Factor Analysis
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2007
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Descriptors: Monte Carlo Methods, Correlation, Meta Analysis, Matrices
Jo, Booil; Asparouhov, Tihomir; Muthen, Bengt O.; Ialongo, Nicholas S.; Brown, C. Hendricks – Psychological Methods, 2008
Cluster randomized trials (CRTs) have been widely used in field experiments treating a cluster of individuals as the unit of randomization. This study focused particularly on situations where CRTs are accompanied by a common complication, namely, treatment noncompliance or, more generally, intervention nonadherence. In CRTs, compliance may be…
Descriptors: Individual Characteristics, Intervention, Statistical Inference, Inferences
Kwok, Oi-man; West, Stephen G.; Green, Samuel B. – Multivariate Behavioral Research, 2007
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
Descriptors: Monte Carlo Methods, Data Analysis, Computation, Longitudinal Studies
Kelley, Ken – Educational and Psychological Measurement, 2005
The standardized group mean difference, Cohen's "d", is among the most commonly used and intuitively appealing effect sizes for group comparisons. However, reporting this point estimate alone does not reflect the extent to which sampling error may have led to an obtained value. A confidence interval expresses the uncertainty that exists between…
Descriptors: Intervals, Sampling, Integrity, Effect Size
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1 | 2