NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ng, Oi-Lam; Leung, Allen; Ye, Huiyan – ZDM: Mathematics Education, 2023
Programming is an interdisciplinary practice with applications in both mathematics and computer science. Mathematics concerns rigor, abstraction, and generalization. Computer science predominantly concerns efficiency, concreteness, and physicality. This makes programming a medium for problem solving that mediates between mathematics and computer…
Descriptors: Computation, Thinking Skills, Programming, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Hua-Xu Zhong; Jui-Hung Chang; Chin-Feng Lai; Pei-Wen Chen; Shang-Hsuan Ku; Shih-Yeh Chen – Education and Information Technologies, 2024
Artificial intelligence (AI) education is becoming an advanced learning trend in programming education. However, AI subjects can be difficult to understand because they require high programming skills and complex knowledge. This makes it challenging to determine how different departments of students are affected by them. This study draws on…
Descriptors: Undergraduate Students, Artificial Intelligence, Programming, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Li; Wang, Xiaoman; Ritzhaupt, Albert D. – Journal of Educational Computing Research, 2023
Computational thinking is believed to be beneficial for Science, Technology, Engineering, and Mathematics (STEM) learning as it is closely related to many other skills required by STEM disciplines. There has been an increasing interest in integrating computational thinking into STEM and many studies have been conducted to examine the effects of…
Descriptors: Elementary Secondary Education, STEM Education, Computation, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Felipe Gonzalez-Pizarro; Claudia Lopez; Andrea Vasquez; Carlos Castro – IEEE Transactions on Education, 2024
While computational thinking arises as an essential skill worldwide, formal primary and secondary education in Latin America rarely incorporates mechanisms to develop it in their curricula. The extent to which students in the region acquire computational thinking skills remains largely unknown. To start addressing this void, this article presents…
Descriptors: Foreign Countries, Computation, Thinking Skills, College Freshmen
Peer reviewed Peer reviewed
Direct linkDirect link
Andrew A. Tawfik; Linda Payne; Andrew M. Olney – Technology, Knowledge and Learning, 2024
Theorists and educators increasingly highlight the importance of computational thinking in STEM education. While various scaffolding strategies describe how to best support this skillset (i.e., paired programming, worked examples), less research has focused on the design and development of these digital tools. One way to support computational…
Descriptors: Thinking Skills, Computation, STEM Education, Scaffolding (Teaching Technique)
Peer reviewed Peer reviewed
Direct linkDirect link
Odden, Tor Ole B.; Silvia, Devin W.; Malthe-Sørenssen, Anders – Journal of Research in Science Teaching, 2023
This article reports on a study investigating how computational essays can be used to help students in higher education STEM take up disciplinary epistemic agency--cognitive control and responsibility over one's own learning within the scientific disciplines. Computational essays are a genre of scientific writing that combine live, executable…
Descriptors: Computation, Essays, Undergraduate Students, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Cui, Zhihao; Ng, Oi-lam; Jong, Morris Siu-Yung – Educational Technology & Society, 2023
Grounded in problem-based learning and with respect to four mathematics domains (arithmetic, random events and counting, number theory, and geometry), we designed a series of programming-based learning tasks for middle school students to co-develop computational thinking (CT) and corresponding mathematical thinking. Various CT concepts and…
Descriptors: Computation, Thinking Skills, Mathematics Education, Problem Based Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marianthi Grizioti; Chronis Kynigos – Informatics in Education, 2024
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying…
Descriptors: Computation, Thinking Skills, Data Science, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Wahid Yunianto; Adi Nur Cahyono; Theodosia Prodromou; Shereen El-Bedewy; Zsolt Lavicza – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2025
Creativity and problem-solving are 21st-century skills that we need to develop in our students. Research on computational thinking (CT) integration in school subjects and STEAM activities has shown a positive effect on students' problem-solving skills and creativity. Our study extends our previous work from the integration of CT in a mathematics…
Descriptors: Computation, Thinking Skills, STEM Education, Creativity
Peer reviewed Peer reviewed
Direct linkDirect link
Hao-Yue Jin; Maria Cutumisu – Education and Information Technologies, 2024
Computational thinking (CT) is considered to be a critical problem-solving toolkit in the development of every student in the digital twenty-first century. Thus, it is believed that the integration of deeper learning in CT education is an approach to help students transfer their CT skills beyond the classroom. Few literature reviews have mapped…
Descriptors: Computation, Thinking Skills, Problem Solving, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Salehi, Ozlem; Seskir, Zeki; Tepe, Ilknur – IEEE Transactions on Education, 2022
Contribution: In this study, an alternative educational approach for introducing quantum computing to a wider audience is highlighted. The proposed methodology considers quantum computing as a generalized probability theory rather than a field emanating from physics and utilizes quantum programming as an educational tool to reinforce the learning…
Descriptors: Computer Science Education, Quantum Mechanics, Computation, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Love, Tyler S.; Cysyk, Joshua P.; Attaluri, Anilchandra; Tunks, Robert D.; Harter, Kevin; Sipos, Renee – Journal of Science Education and Technology, 2023
Programming and automation continue to evolve rapidly and advance the capabilities of science, technology, engineering, and mathematics (STEM) fields. However, physical computing (the integration of programming and interactive physical devices) integrated within biomedical contexts remains an area of limited focus in secondary STEM education…
Descriptors: STEM Education, Teacher Attitudes, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Nikolaos Pellas – Journal of Educational Computing Research, 2025
Tangible programming tools (TPTs) are promising teaching aids in programming courses due to their interactivity and ability to enhance early childhood students' computational thinking, spatial reasoning, and executive function skills. However, it remains unclear whether TPTs support these skills simultaneously. This study examines the impact of…
Descriptors: Computation, Thinking Skills, Spatial Ability, Executive Function
Peer reviewed Peer reviewed
Direct linkDirect link
Kakavas, Panagiotis; Ugolini, Francesco C. – Research on Education and Media, 2019
This study presents a 13-year (2006-2018) systematic literature review related to the way that computational thinking (CT) has grown in elementary level education students (K-6) with the intention to: (a) present an overview of the educational context/setting where CT has been implemented, (b) identify the learning context that CT is used in…
Descriptors: Computation, Thinking Skills, Elementary School Students, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Tsai, Fu-Hsing; Hsiao, Hsien-Sheng; Yu, Kuang-Chao; Lin, Kuen-Yi – International Journal of Technology and Design Education, 2022
In order to reflect on the lack of developing content knowledge of technology education in Taiwan's primary teacher education, the main aim of this study was to develop a STEM-based game-design project for helping preservice primary teachers acquire computational thinking concepts in a teacher education course and to evaluate its effectiveness.…
Descriptors: Foreign Countries, STEM Education, Game Based Learning, Design
Previous Page | Next Page »
Pages: 1  |  2  |  3