NotesFAQContact Us
Collection
Advanced
Search Tips
Location
China1
Mexico1
Laws, Policies, & Programs
No Child Left Behind Act 20011
Assessments and Surveys
Peabody Picture Vocabulary…1
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Ziren; Cao, Wenhao; Chu, Haitao; Bazerbachi, Fateh; Siegel, Lianne – Research Synthesis Methods, 2023
A reference interval, or an interval in which a prespecified proportion of measurements from a healthy population are expected to fall, is used to determine whether a person's measurement is typical of a healthy individual. For a specific biomarker, multiple published studies may provide data collected from healthy participants. A reference…
Descriptors: Intervals, Computation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Journal of Experimental Education, 2019
The analysis of covariance (ANCOVA) is a useful statistical procedure that incorporates covariate features into the adjustment of treatment effects. The consequences of omitted prognostic covariates on the statistical inferences of ANCOVA are well documented in the literature. However, the corresponding influence on sample-size calculations for…
Descriptors: Sample Size, Statistical Analysis, Computation, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Xiaofeng Steven; Loudermilk, Brandon; Simpson, Thomas – Measurement in Physical Education and Exercise Science, 2014
Sample size can be chosen to achieve a specified width in a confidence interval. The probability of obtaining a narrow width given that the confidence interval includes the population parameter is defined as the power of the confidence interval, a concept unfamiliar to many practitioners. This article shows how to utilize the Statistical Analysis…
Descriptors: Sample Size, Statistical Analysis, Confidence Testing, Intervals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Inzunsa Cazares, Santiago – North American Chapter of the International Group for the Psychology of Mathematics Education, 2016
This article presents the results of a qualitative research with a group of 15 university students of social sciences on informal inferential reasoning developed in a computer environment on concepts involved in the confidence intervals. The results indicate that students developed a correct reasoning about sampling variability and visualized…
Descriptors: Qualitative Research, College Students, Inferences, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Journal of Experimental Education, 2015
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Descriptors: Statistical Analysis, Sample Size, Computation, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Peng, Peng; Namkung, Jessica; Barnes, Marcia; Sun, Congying – Journal of Educational Psychology, 2016
The purpose of this meta-analysis was to determine the relation between mathematics and working memory (WM) and to identify possible moderators of this relation including domains of WM, types of mathematics skills, and sample type. A meta-analysis of 110 studies with 829 effect sizes found a significant medium correlation of mathematics and WM, r…
Descriptors: Meta Analysis, Mathematics, Short Term Memory, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Romano, Jeanine L.; Kromrey, Jeffrey D.; Hibbard, Susan T. – Educational and Psychological Measurement, 2010
The purpose of this research is to examine eight of the different methods for computing confidence intervals around alpha that have been proposed to determine which of these, if any, is the most accurate and precise. Monte Carlo methods were used to simulate samples under known and controlled population conditions. In general, the differences in…
Descriptors: Monte Carlo Methods, Intervals, Computation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Gilliland, Dennis; Melfi, Vince – Journal of Statistics Education, 2010
Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…
Descriptors: Statistical Inference, Surveys, Intervals, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong – Multivariate Behavioral Research, 2010
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Descriptors: Intervals, Sample Size, Factor Analysis, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kelley, Ken; Rausch, Joseph R. – Psychological Methods, 2011
Longitudinal studies are necessary to examine individual change over time, with group status often being an important variable in explaining some individual differences in change. Although sample size planning for longitudinal studies has focused on statistical power, recent calls for effect sizes and their corresponding confidence intervals…
Descriptors: Intervals, Sample Size, Effect Size, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Yurdugul, Halil – Applied Psychological Measurement, 2009
This article describes SIMREL, a software program designed for the simulation of alpha coefficients and the estimation of its confidence intervals. SIMREL runs on two alternatives. In the first one, if SIMREL is run for a single data file, it performs descriptive statistics, principal components analysis, and variance analysis of the item scores…
Descriptors: Intervals, Monte Carlo Methods, Computer Software, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…
Descriptors: Intervals, Sample Size, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation
Previous Page | Next Page ยป
Pages: 1  |  2